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Abstract

Values of large dimensionless unknown functions @gample, a large Reynolds
number) can be found out as solutions of non-linematial differential equation. In

this case these equations can be brought to somdaruof non-linear ordinary
differential equations. Turbulent solutions cor@sging to large values of unknown
function are complex. Transition from real soluti@ncomplex turbulent solution is
realized through infinity of the right parts of ardry differential equation system to
which Navier-Stokes equations are brought. Thual selution of Navier-Stokes
equation for turbulent mode yields function goimgg infinity. At the same time,

complex solution for the turbulent mode is finikduid flow resistance coefficient is

calculated for round pipeline with different pipediwalls roughness.
Problem Formulation

Let us consider Navier-Stokes problem and congneduation for incompressible

fluid. They are as following

avk (t r) avk (tr) __oPEr)
Xy

(O,V)=0

+Z V, (t,r) +VAV, (t,r),k=1...3
=1 .

Boundary conditions on the body boundary adjoinmfuid areV (t,r) =0,r S

where S is a body boundary. We will seek a solution infitven of series using
Galerkin method (hereinafteN - o)

Vi (U)=Z_: Xq (D@ (r),P(t,r)=Z_‘, Yn(O@a (r) + o (r);
ris - ¢n(r) :Ol¢n(r)’wn(r)|]c2

where spaceC? is twice continuously differentiable functiogy,(r) is a defined

external action which, in case of pipeline, is dquayy(r)=—-(P-PRy)z/L+P,



where z - direction of the pipeline longitudinaR, B,- pressure at the beginning and

the end of the pipelind, - pipeline length.

Now we substitute these functions into the difféis@nequation, multiply by

Y., (r) and integrate over the volume, then we obtairovalhg differential equations

system:
dx t
() Z FrrpaXp (1) X, (t)+z GrpX, (1) + H;;m=1,...3N
Pa=t . (A
Z PrpXp(t)=0,m=1..,N
p=1
After we resolved the second equation (A.1), stutstl

2N
Xneon (£) = Z ComXy (t),n=1,...,N from the second equation (A.1) to the first one, w

m=1
have
dX (t) 4N
— Z I:mpq p(t)x (t)+(z Z Xp(t)"'Hm;m:l,...,ZN
p.a=1 p=1 p=3N+1

L(A2)

4N

Z FrpaXp (1% (t)+(Z 3 )G X, () + Hy=0,m=2N +1...3N

p.g=1 p=1 p=3N+1

Defining X,y (t),n=1,...,N, corresponding to pressure change, from the second

equation (A.2) and substituting found out value@itite first equation (A.2), we have

equations system

dxm(t) Z FrrvaXp (0% (t)+Z CrpXp() + Hpim=1..2N.  (A3)

p.g=1

At that



2N
Xnron (1) = Z ComXm (1),

m=1

N 2N
Xpean (1) = ConHm + - BunXon (1) + Z ForogXp (0% ®),n=1,...,N
m=1 m=1

p.a=1

Where values
X (t) = Xn+N(I—1) (t)!l =1..3 yn(t) = Xn+an (t),n =1...N.

are known and coefficient§, .G, H,, = G1 JHL F2 Grﬁp,H2 b are

mpq ! mpq * mpq * m»~nm»~nm

constants. This system of non-linear ordinary défeial autonomous equations (A.3)

Is to be solved. Solution convergence issues willliscussed below in the text.
1. Finding of Solution of Ordinary Differential Egtions in Complex Plane

Let us consider system of non-linear differentigiocmomous equations
dc
— —QI (ClreeiCy sl =1,..N (1.1)

Navier-Stokes equation system and continuity equaten be brought to system of

non-linear differential equations:

dc (t)

" Z FinpaCp (1)C, (t)+Z Gy (1) + Hpy = QUGG );m=1..,N (1.2)

p.o=1
where three-dimensional velocity IS defined by fakan

N
V (X, X0, X3) =D (1), (%, %o, %) . At that, functiong, (x,%,,%; )is given in the
n=1

form of sine or cosine. Then coefficierts t {or continuous function decrease not
more rapidly thanl/n* when index increases and series reduction is fpessie.

instead of infinite number of terms, finite termswber is used. At the same time, the

infinite number of terms forms convergent series.



It was found out that a set dfl +1 coordinates for the system equilibrium

position exists (1.2). Indeed, let us assume tretthave found several equilibrium

positions with coordinates’,1 =1,...,N. Let us seek the solution in the form

b =b’ +b°. For that we will substitute the solution into thight part of the

differential equation (1.2) and will equate it tera, then following equations system

is obtained
3 Ay (bS,...b3)B° = 0.
1=1

For existence of non-zero solution of this diffdr@inequation, it is necessary that

determinant is equal to zerpA, (b’,....b5 )|= . Given zero determinant, coefficients

b° from linear equation will be defined up to a nypligr. This multiplier will be

defined from equality to zero of determinant of dimear equation system. Thus, we
have N unknown multipliers, which will be defined from téeminant equality to

zero. l.e. set o +1 coordinates of the system equilibrium positiorsexi
Differential equation system (1.2) for non-multigdquilibrium positions can be

N
expressed by means o =Z O X Substitution. At that, the system (1.2)
k=1

equilibrium positionsb®,1 =1,...,N;s=1,...,S will be transformed into equilibrium
positionsa’®,l =1,...,N;s=1,...,S and eigen values and eigen vectors of the linedriz
system (1.2) will be defined as.

9Q¢

[ oc,,

(B7,-08) = Ny O] Gma =0

0 s s s _
|$Qk(bl ""’bN) _Aaé-km |_O

m

Equation system (1.2) will be



dx,
dt

N
=L —a) D (X = an) 7 Ry (e Xy ) = Fy O X ) (1.3)
k=1

Valuesa® satisfy conditionF, (a7,....ay ) =0,k =1,...,N;s=1...,S.

Equation system (1.3a) can be written as

d > s
% = exp[G) (Xg,--- XN )]|S:|1 (x —a°), (1.3b)

where multiplier which can never be equal to 0sedi-exp[G, (X;,...,Xy )] and this

S
multiplier is equal to exp[G, (X,....Xy)] =F (xl,...,xN)/|'| (x, —a°). After this

s=1

multiplier is substituted to (1.3b) we obtain (3).3dow we will demonstrate that this

multiplier can never be equal to 0. Whgn- a“,l =1,...,N the limit of

oF (af ,...,ax)
aX|

=A] (a7 -a)...7 —a" )@ -af ™)...@f -a°)]

expG (& ,....ag )] =

& -ah)...a" -a" Haf -af™)...a" -a°)] =

is finite.

Here we canceled out a multipligy —af’, as we consider only not coincident roots

being coordinates of equilibrium position. So wewhld that this multiplier does not

equal to zero after infinite time.

Thus, the differential equation can be written as

dx 2 s
dH, (t,t,) ’

o :exp{G|[X1(H|),-..,XN(H,)]},| =1...,N



where H,(t,tg ) - function which tends to infinity when coordinatdend to

equilibrium position. For real solutions, this @tion is monotonic. That is, we have

obtained dependence of the solution on valgt,t, , whlich is monotonic time-

dependent function.

Lemma 2. Necessary and sufficient criterion fornomkn function to tend to steady

equilibrium position coordinates i#l, (t,t;) - «© whent - «. At the same time,

equilibrium position coordinates have to have & pea.

So, we have

explGy (%, Xy )]  expIG, (85,....a%)] =

1 -1 +1 S (1.5)
=N (8 —ap)...@" —af )& —af ™). -a])l;

att — o and henceH, (t,t;) - o, =1...,N as integral of constant. Inverse theorem
is also valid, on conditionH, (t,t;) — «,l =1...,N, one of steady equilibrium
positions is realized. This is a consequence outswm type; on condition
H, (t,ty) - o,l =1,....,N, according to Lemma 4, negative real part of @alli exists

in formula (1.6) and solution tends to equilibriggosition coordinatea® in formula
(1.4). If equilibrium position coordinates havelrparts, valuesi’ have real part. At

thatt — co.

Lemma 3. Solution of differential equation (1.1)fisction X ¢) which satisfies to

equation (1.6).

To obtain (1.6), let us divide equation (1.4) byduct of multipliersx, —a° and
multiply (1.4) by dH, (t,t,). Then we will decompose obtained fraction into sefm

simple fractions and perform integration. The faliog equation is obtained



S
> AlIn(x —af) + 27, ][ = H, (t.ty),] =L..2N .
=1

Here for the case of sound energy emission invatdt,,t] different branches of

logarithm are obtained.

After the expression exponentiated, we have (1.6)

[1 06 -a)" exp@rAang/T] (¢ -al)* =expb Gl )

A =1/[(a - &)...a° —a"™) (&’ - a°™)...a° - a°)]

where all values of equilibrium position coordiratare not multiple and are not

dependent on radiation process occurring in amvalgt,,t]. In case of laminar real

solution, radiation will not appear, and in casetwbulent solution, followed by
radiation, there will be energy transition. Realhyesence of radiation yields the
complex solution which describes turbulent pulsimgpde. At that, at solution
transformation, turbulent mode is followed by souvase. Exponential multiplier

does not affect equilibrium position coordinatesickhdefine stationary solution.
Existence of multiplieexp@7iA’An, thanges calculated main branch of solution for

coordinatex, , but will not affect equilibrium position coorditea

S
Lemma 4. Sum of coefficientd® by indexs is equal to zero, i.e)_ A7 =0
s=1

In case if following fraction decomposed.

Qs-1(Y)

P(y) = :
) (y-a)..(y-a ) (y-a")..(y-ad)




S
where Qg ,(y) is S-1-ordered polynomial. Equationz AP = @ill remain
=1

Q.1 (&%)
@° -a)..@" -a"h)E* -a™)...(a° - a)

let us consider a sum

satisfied, A’ =

. Let us prove this. For this

s+l

_S Quu@)(y-a)..(y-a )y -a)...(y-a’)
P et .
) Zl @ -a)...a° -a )@ -a’)...a° - aP)

This sum is equal tdP(y) =Qs,(y .)We write formula for polynomial equal to

Q.4 (Y), dividing the equation by produty - a/')...(y —a° we obtain

ZS: . - Qs—l(ais)Jrl . +
= @ -a)..@-a )& -a7")...a" —-a7)@& - y) |
Qs-1(Y)

+ =0
(y-a)..(y-a")(y-a’)y-a")..(y-a°)

S+1
If suppose thaty = a|S+1, equality Z A7 = 0is satisfied whens +1 equilibrium
s=1

position exists.

But to realize the solution, it is necessary towrexjuilibrium positions of this non-
linear equations system. Besides, equilibrium pmsstcan be multiple that changes
the solution finding process, it becomes randonshaotic, but we are not going to
consider this case. Nevertheless, it is possiblertve the following important

theorem.

Theorem 1. Cauchy task is considered under arpitraal initial conditions for
system of non-linear ordinary differential equasiofl.1). If system (1.1) has
complex conjugate equilibrium positions with reals then, for finite real argument

t, Cauchy problem solution for the system (1.1),rial initial conditions, tends to
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infinity. Then this solution becomes a complex oeading to equilibrium position
in case when complex equilibrium position coordesahave real part. Here the right
part of (1.1) is considered as being a regulartiancreal for real arguments. This

function has finite number of non-multiple equiliom positions.
Proving

If the system (1.2) is resolved at non-multiple igloium positions then,

according to Lemma 3, we have

{-2%, arctan[k, - a%)/bF] + A%, In[(x - a7)? + (52T} . +
+3 AIn(x - )L = H, (LL), - (37)
k

where a’+ib® selected complex equilibrium position;® other equilibrium

positions. Coefficientst} satisfy conditionz A’ =0, according to Lemma 4. At

S

S
that, in sum)_ A’ real part valuely, in case of complex solutioA’ presents twice
s=1
as all values’ satisfy condition}. A’ = 0so we have formul@Aly +> A= .0
s k

Let us substantiate solution (1.7). For that wel wbdify two complex

conjugate terms of the solution (for expressionpdieity, index| is omitted)

/]fe + I/]lsm + /]rse — I/]lsm — 2(x - as)/]fe — 2bs/'|ism

; 1.8
x—a®—-ib® x-a°®+ib® (X_a8)2+(bs)2 (1.8)

where A° = A°, +iAS . After integration (1.8) over argumemnt, we obtain formula

(1.7)

S

A In[(x - a%)2 + (b%)2] - 28, arctanX;—Sa .
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The solution is
X (1) =& +btanD, t ()
where
Dy (1) ={2 A" (4 =6 ), +A% Inl(x =a%)” +(B7)° T, —H\ (tte)}/ 245, =
=3 ;,k +2005 + > A INA-cf I %) + Ay In[(1-a° /%)% + (B /1 x7] -
k‘Z At In(x -kcl") = A In[04” = a%)" +(67)°] — H, (L.t} 245,
k ; M +2454 =0

At that, value of) (Afcf +24%,a° )is real due to existence of complex conjugate
k

equilibrium positions. Thus, fdrx |- o« and finitet, we have equation

X (t) =a’ + b tanD, (t). (1.9)
Solution of this equation tends to infinity.

At that, solution of differential equatifar rising H, (t,t,) , according to Lemma

2, can have complex roots

> AIn(x —af) + ZﬂAnk]ﬁO: H tt )
k

At that, as equationz )I:‘ = (s satisfied according Lemma 4 and equilibrium
k

positions have real parts, values with negativé pae ¢ exist, so convergence to

one of the equilibrium positions takes place. Rsgdlition will tend to infinity at that
existence, and uniqueness condition for Cauchylenolwvill be breached. According

to Lemma 2, atH, (t,t, )infinity, unknown function will tend to one of etjorium

positions. This position of equilibrium can not f@&l as the real solution is infinite.
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This means that the solution will have a branchpogt and will tend to complex
equilibrium position. That is, for equilibrium comtep positions, finite complex
solution is obtained a#, (t,t;) change. Thus, in some point a complex solutioh wil

begin.

End of the proof.

Now we will give an example describing this progeot the differential equation,
transition to the complex solution. So, for thefeléntial equation, there can be a

complex solution instead of infinite real one

L
dt

And these equilibrium positions are purely imagyndnat is, the solution cannot tend
to equilibrium position. And the real solution dfig differential equation tends

rapidly to infinity x =tan[t —t, + arctan, )].
Using an implicit solution finding scheme obtain the following equation
X = X, + (L+ x*)At + 0(At)?.

Seeking solution in respect to unknown functianwe obtain the following implicit

scheme

- 1-/1-4[x, + At +0(At)2]At
- 2Nt '

This implicit scheme with constant step correctlsctibes solution tendency to
infinity. At reduced calculation step, this schewields larger value of variable,
that is, it yields larger value of unknown functiofhat is, it correctly describes

behavior of the differential equation solution wpirtfinity. When infinity is reached,
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under conditionx, > 1/(4At) — At — 0(At)?, the finite complex solution will be found.
Numerical computation of this equation has validatieis analysis of the solution

obtained.

At that, the complex solution possesses pewperties; it performs complex
rotation around equilibrium position. At the sam@ée the real solution tends to
infinity, i.e. right part of the differential equah tends to infinity and existence and
uniqueness condition for Cauchy problem are breahclse additional complex

solution is arisen.

The solution for complex initial data iggiven by formula

X =tanft —t, +arctanfg, +i9)] for anyt. Thus, approximately we have

X(t) = -i expfi[t —t, +arctank, +i0)] —exp{-i[t —t, + arctank, +19)]} _
exp{i[t —t, +arctank, +10)]} +exp{-i[t —t, +arctank, +i0)]}
=1 —2iexpf2i[t —t, +arctank, +i0)]} +iexpfi[t —t, +arctang, +i9)]} +...=.
=i—2iexpRi(t—-t,+a)-20] +iexpli(t—-t, +a)—-48] +...
arctang, +io) =a +if

If we choose branch with positivg, we obtain converging series. At that, this

fraction denominator never becomes zero.
That is, for real plane, finite solution does notseé In complex plane, finite

continuous solution exists in the case if equilibripositions are not multiple.

But there is a question — what is the platameaning of imaginary part of the

solution?

2. Physical Meaning of Exact Complex Solution

So, for turbulent solution corresponding to compeuilibrium position coordinates,

we have solution
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x =a’+pB°tanD t ()
The solution consists of step term in the form e@falfunction and smooth part
X =a + S{tan[D(t) —i0] — tan[D(t) +i0]} /2 + S3{tan[D(t) —i0] + tan[D(t) +i0]} /2.
As, at averaging over period, tangents sum witliaking into account step term is

equal to zero, we will study the step term of tbiugon. At that, this solution has

singularity when conditioD(t) = 7n1(k +1/2) is satisfied. Step term of the solution is

— 5 s % 1 - 1 =
X =ay + 43 k:Z_m{[ D(0) = 77k + 1/2) -10 D(t)—n(k+1/2)+i0]/2

=a® +7if° i J[D(t) - mk +1/2)] +
k=—00

1 B 1 :
D(t) - 7k +1/2)  D(t) - 7(k +1/2)°

=af + 7B Y, ADE) -k +1/2)]

k=—c0

+Vpl /2} =

That is, imaginary medium pulse is originated. Imagy velocity means flow
rotation or oscillation; flow step is originated wh will be destroyed in time

AD(t) = nn to originate repeatedly. Number of such stepsitef But how to average
this steps? You should pass to probabilistic intgggion of the description. That is,
to average imaginary part over the peribgh’) — 7(k + 1/Phen we have local
complex average solution

<x >-a =71 <o(h)/Dy(h) >/ 7= 1D, (h), Dy (h) = 7k +1/2).
Continuous part of the solution has positive andyatige parts which are

compensated when averaged. To obtain a global geveralue it is necessary to
N
average with respect to vallkg so we have< x >-a° =i5° > 1D, (h)/2N. We
k=—-N

obtained complex velocity; imaginary part is deflngp to multiplier. Real part of

complex velocity corresponds to average value ¢dorgy, and imaginary part is a
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mean square deviation. Simultaneously, there isodex motion consisting of
positive and negative value of root frofii.
Contribution of imaginary part to averagéueas equal to
<X >=af Ay v =1 D ()

At that, module of average value, that defines realution, is equal to

< x >= J(a,s)2 + B°y2: v, =1 D, (), where equilibrium position coordinates and
time are non-dimensional, then, as we calculatersquoot of imaginary part, we
define branch3® > 0Thus, average single-valued solution is found.

This multiplier ), depends on the surface roughness and it is foramd fiumerical

experiment. As numerical experiment has shown,réamd smooth pipeline the

multiplier is equal toy, = 1At that, the smooth pipeline has a constant, mmimn,
average module of roughness inclination tangenalegu< [tana [>=1/ R, =1/ 230Q

that is associated with molecular roughness, sekomel.l. For this, one term of

series which determines flow velocity is used. Vakewalate this value for one term of
the series for smooth surface. The solutior, {§) =a;° + S°tan(, where

D, (h*) =h* =7k +1/2); D, () =L y; =<1/ D, () >=1.
This value exactly corresponds to experimental tdamfor round cross section

pipeline if the solution roughness is taken intocamt. At that, to take roughness into
+
account for internal problemhl" iIs multiplied by (Lscr”)a, here k/I is a

constant average tangent of flowing surface intglma From this we obtain

¥ =(#)”, see section 1.1. At constant average roughnegghthehe

1+ kR, /I
coefficient ), is not a constant a&/l value is determined by other formula

depending on dimensionless pressure, see secfion 1.
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Appendix

1. Laminar Solution of Navier-Stokes Equation
Value of round pipeline resistance coefficient for arbitrary Reynolds number and
roughness degree are known only from experiment. It is proposed, using complex
solution, to obtain a solution of Navier-Sokes equations and based on the
gualitative reasons to define roughness influence on the solution of Navier-
Stokes equation. It was possible to draw classical Nikuradze curves for round
pipeline resistance coefficient versus Reynolds number and roughness degree

with an accuracy of 10%.

Introduction

The problem of turbulent fluid motion daption has not been solved yet. It
creates difficulties wheroil, gas pipelines design calculation is performed.
Besides, there are no theoretical methods for ghter of bodies motion in
turbulent environment. These methods would be acgsfor description of
motion of aircrafts, submarines or above-water ship the turbulent mode.
Without simulation of bodies motion in wind tunnelswater basins, design of the
bodies moving in the viscous environment is impassi

There are approximate formulas for pipelresistance coefficient at some
ranges of Reynolds numbers, see [1], [2]. But tlaeg empirical approximate
formulas and they are applicable only for particiaynolds number ranges.

Classical experimental Nikuradze curves of roungelome resistance
coefficient versus Reynolds number and roughneggedeare well known.
Approximation of convective term reducing Navieol&ts problem to linear one
with effective turbulent viscosity is applied. Bstich transformation distorts
solution of Navier-Stokes equations and for matghm experiment the turbulent
viscosity coefficient can have any value, up toateg. Galerkin method which

brings hydrodynamic problem solution to systemafitinear ordinary differential
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equations is applied. But in the case of turbulaonde, this non-linear equation
system has complex equilibrium positions, i.e. slodution is complex. Indeed,
hydrodynamics equation system, in turbulent madegal plane does not have any
solutions, the equation solution tends for infinisge [3] and main part of the
paper. But complex solution is finite. About phydianeaning of the complex
solution and oscillatory behavior of its imagingrgrt see [4],[5] or Section 2 of
this paper. Thus, it is necessary to solve hydradyo problems for turbulent
mode in complex plane. At that, the turbulent soluis not single-valued, there

are finite number of the solution branches.

1.1. Calculation of Round Section Pipeline Resista@oefficient for Incompressible
Fluid

This algorithm has been used for calculation ofstaace coefficient for pipeline
with round cross section. The algorithm is desctilbearticle [6] in English. We will

seek the solution of problem for cross section doupipeline in form

V, =Vy(t)[1- r2/a2(z)], in cylindrical system of coordinates. As exterfaadtor acts

R-P

only along longitudinal axi®(z) =P, + z, where P,,P, - pressure in initial

and final part of the pipelind, - length of the pipeline, radial and angular védies

. : B -P .
components are neglected. External action is etpdi, =1T2' According to

formula (1.2.2), the pressure gradient is equal%%=¥. So we have the
y

equation
v, v, ov, __R-F VAV,
ot 0z L

Substituting velocity value we obtain
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vV, 2.2 2 2 da R-P AN,
~01-r?/a®)+V2(1-r?/a - - 1.1.1a
ot ( )+ ( )a3 dz o Y a’ ( )

Multiplying this equation by radius and performimgegration over radius, as we use

cylindrical coordinate system, we have

oV, (R~ P)a’
2

Toa?/6+ vz oda

+2W, = od
z

To obtain finite number of solutions we will mullypequation (1.1.1a) by
function r(l-r?/a*)" and integrate over volume. Then we will obtainitén

number of turbulent solutions both for smooth aadgh surfaces. Stationary
laminar solution satisfying conditiorda/dz=0 is single-valued as in the

equation (1.1.1a) the laminar solution is identi¢at different values of
r(-r?/a?)". At the same time, likewise Schrédinger equatforite number

of turbulent solutions is found, each has its owargy. At transition from one
state to another, discrete energy is radiated. dvine energy minimum value
defines the solution choice.
After calculating a module of the right pamdaaveraging module of
deviation angle tangent, we obtain
NV,

(P, - P,)a’ V2a<|da/dz|> V22ak

6

a’l6+ +2W, (1.1.1b)

It will be seen that when minus sign is chosenvi@lue of average module of

deviation angle tangent|da/dz[>, roughness presence increases flow velocity
v, .,»<dal/dz|>
T e

correct, flow velocity has to decrease due to roeghk presence.

... dv . o
as the full derivative—2 = increases and this is not

When turbulent viscosity is taken into aagupunegative value of average
velocity associated with process velocity correlati  function
o<u >

- p<u u, >= oK , see [1], is used and this leads to plus signaf@rage

a
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module of roughness inclination tangent. The moveraquation taking into account

disturbances is

6<pu|>+ (p<u ><u, >+p<uu, >)=- =P
ot 0X

a XI

+ pv <Au, >

That is, convection term should be taken with mjraigight part of (1.1.1b) should
be taken with plus.

Besides, it is necessary to choose plus for avemagpule of roughness inclination
tangent to obtain complex turbulent solution. Othee, solution describing pulse

turbulent mode will not be steady.

Changing pipeline radius to diameter and dividiggralue vk /(dl ), we obtain

;Ro_ T _(R-R)I°R,
R - 2R°R°r+ T oveL .(1.1.2)

r=24 D//(Rcrd ), R, =V,d W1/ R, =<|da/dz[> 12=k/| =<|tang |>

If you use another branch of root mean sgjugasteady solution and following

equation will be obtained

dRO— -R% - ZRORcr+—. (1.1.3)

Thus, steady solution for large difference in puesss

Ry =Ry +y/R; +T/8.

Laminar solutions of these two equatiah small pressure difference are the
same. For turbulent mode with big pressure thetisolthas linear dependence of
Reynolds number versus pressure square root. At pnegsure increase, Reynolds
number also grows and, as it follows from (1.1fgssure is increased. So the

solution is not steady. In case of the complextswiut is equal to

R,=R, —i\T/8-R%.
At that, when pressure increases, imaginary pastetdcity increases too and this

does not lead to increase of real pressure, the pesssure keeps the value

unchanged.
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If micro roughness<|tar¢ |> is distributed all over the pipeline surface,dtalso
present on macro roughness and defines criticah®dy number and resistance
coefficient at Reynolds number 2300. Micro rouglsnleas the molecular nature, it is

defined by average atom size equal to average geaoaledifference between the
nuclear sizer, and size of Bohr orbitr =,/r,a, when the distance between atoms

a=3.04ZA is equal to some value determined by propertiepigline boundary,

iron, titanium and carbon. Distance between iroomat is a., = 287A, between
titanium atoms -a; = 346A, between carbon atomsa =3.567A, see [7]. At the

same time, the absolute value of tangent of miorgylnness height inclination for

metal surface of the pipeline 5 determined by  idan

N
h(2) =<[tang |>= > expl-(z-na)?/20°]/(2N+2r7). The average tangent of

n=—-N

inclination is equal to

[oe]

. I exp[-(z - na)?/20?]dz

e dz -, o
- = I h(z) = = =
R, + “72Na 2

" N 27Ta 2a |
1 . 1 140 1
2[B.043\a, 2[B.043\ 05M0° 1150

In this paper, critical Reynolds number was cakadawith respect to radius.

Critical Reynolds number with respect to diameseedual toR,, = 2300But

why critical Reynolds number for the sphere is éqae83[1C°? This is due to

different definition of critical Reynolds number.hi§ value is equal to

dl
1 _da_ Qlar o2 = L pla , Wherel 4 - effective hydrodynamic size of
R, ds ds lg 2300 |4

the body, including medium,a - true geometrical body size, and

di
d;’”=|tan¢ |=ﬁ - molecular tangent of roughness inclination. Alne ratio
S
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a can be equal tea— = 001.
Ieff eff

Critical Reynolds number is equal #®&, = 2300@acro-roughness elements
<|da/dz|> are rarer and this causes increase of resistanefficeent at
Reynolds numbers which is 12 or more times more.

So we obtained a stationary criterion for Naviesk®s equations taking into

account one term of the solution series for oneedisional case:

RE-2R,R, +T/8= 0
For one-dimensional case, on condition of pipetiress section area constancy,

the continuity equation is the same. Laminar sotutf this equation is

R, =R, —R: -T/8=[R, /NT -|RG /T -18NT.

For external pressure equalTie 8R%, a complex solution and turbulent

mode take place as Reynolds number from this psietjual to critical value.

From experiment and calculation we have criticayriéds number for round

pipeline R, -1 !

=—————=2300. The pipeline resistance coefficient for
k <|tang |>

round cross section pipe is determined by formwika gubstituted to the formula

the pressure difference expressed through dimees®pressure)
_2APd _2Tv?k _ 2T
AVEL VLA Ry RS

The average velocity used for Reynolds number uskeip

A

? r’. ¢ V,d _R,
V,=| r'Vo@-—)dr/| rdr=V, /2R, =—2—-=—.
a !; O( az) _E 0 Ra v 2
The pipeline resistance coefficieAl,,, asymptotic for laminar mode in round

cross section pipeline is calculated truly.

T T 2T 64
R,=Ry/2=(Ry —\R> -T/8)/20 << Ay = =
: CT 32R; '8RZ " Ry [RZ| IRl
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Asymptotic behavior of the pipeline resistance ftoeit is obtained for small
Reynolds numbers when the convective term is small.

In case of large pressure difference, weeha complex turbulent solution

R, =R, —iyT/8-R% =(R, /T —=i,/1/8—-R? /T)JT. Computing more precisely,

contribution of rotary imaginary part to forward leeity of flow movement

corresponds to square root of imaginary part acegrb formula (1.1.4)

&:&_ l RCf Rcr
T T s T \/7 \/ 8 T —-pexpiy)
B={al[k(T,&)R, 11(T,&) 11}, (1.1.4)

0=0.25[3/2=3/8
and it is necessary to use value of ratio of Rey;alumber to square root of

dimensionless pressure as value of order 1 inuttielient mode. At infinite pressure,

Reynolds number for the flow is proportiongl~ T ~ djfﬁz. At that, the smoothest

surface is the surface with average module of natibn tangent equal to inverse
value of critical Reynolds number. For solutiorthe form of series, another value of
a will be calculated. This value is defined from ntieal values of resistance
coefficients at large Reynolds numbers and molectdaghness. The smoothest
surface corresponds to average module of tangemniclmation equal to the inverse
value of critical Reynolds number as the smallestiuhes of tangent of inclination
correspond to molecular type of roughness. At teHgctive diameter is less than
true diameter. The average module of tangent dhetoon angle can not be less than

molecular roughness and its minimum value is etualtang >=1/R, . That is, 1 is

the maximum value of ratio of effective diametetrice diameter because=2. For

external problem, effective diameter will increas:d the coefficient will be
determined by formulg@ ={[ k(T,&,)R, /1(T,&,) +1]/2}°.

Coefficients is proportional to



23

At zero macro roughness, effective diameter is kdqoal, that is, when

roughness is increased, effective diameter decseaseValue
dg /d=[2/(kR, /| +1)]Y* was obtained from numerical experiment that

corresponds to fourth root of mean square deviathbrzero macro roughness,
micro roughness presents. And ratio of tangentadrminclination roughness to

micro roughness is more thr(l <|tara [>) =1.
At 1/k=30, we have value of effective pipeline diameter

dy /d =[2/(2300/30+1)]¥* = 038.

At the same time, diameter is changed & coefficient of pulsing part

of the solution, i.e. for imaginary part from wherthe multiplier

B={2/[k(T,&)R, /I(T,&) +11}¢ originates as the imaginary term is

proportional to T ~d3? which is averaged. At that, valu§1/8—R% /T

corresponds to fourth root of mean square deviation

Here, influence of walls roughness in turbulentwflon imaginary part of
Reynolds number of the flow is taken into accourd. obtain curves with
constant roughness height, it is necessary to efiiective average module of

tangent of roughness inclination angle. The effieciverage module of tangent

of roughness inclination angle has to depend oereat pressurm.

1(T, <o)
And in points of infinite Reynolds numb@r dimensionless pressure, we

have the roughness corresponding to constant rasghn height

K(e0,$p) =£=i, wherek - mean square root of the roughness height,

[(0,é0) To <o
radius of round cross section of the pipeline.

The formula is chosen in such a way thaifines correctly dependence
of Reynolds number versus external pressure aralipgoresistance coefficient

at infinite Reynolds numbers and external pressure
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ImR, = -i4A/8{2/[k(e,&)R, /1(,&) +1]} T at resistance coefficient equal

A= 162
Ry [2/(R, [ wy +1)]%7

When average module of tangent ofjhmess inclination anglclg 5

constant but roughness heightis varying we obtain a curve which differs from

Nikuradze curve.

100N

B4 \
32 \
il \ Rle=2300

k=14

i k=30
4 k k=60
lik=128
5 — k=252
h k=507
Ik=1300

Re
100 1000 10000 100000 1000000 4000000

Fig.1 Curve of round pipeline resistance coeffit\grsus Reynolds number for

different mean square root tangent of roughnesmatmon angle

But Nikuradze formula is obtained for constantaatf pipeline radiug, to average

roughness heighk. The formula (1.1.4) contains effective averageduie of
tangent of roughness inclination angle expressealgi ratio of pipeline radius to

average roughness height using dimensionless pesssu

|5(('|_;_<::)) ={exp[-|VT =Ty |/1a(&) 1+ &L-expE [NT =T, [/]a(&) DI}

x {1+ 04exp{-{\T = T, B V(E)I & =10 /K,

Value T, =8R:. Influence of effective average module of tangehtroughness

inclination on flow property depends on Reynoldsber or pressure difference.
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Empirical formula for finding of coefficienta(&,), 8(&,),y(&, b following

fo

a(&) =R, 22, BE,) = V&) =R, €

At the same time, at the beginning of formatiortred complex solution imaginary
partT =T, =8RZ2, or at the beginning of turbulent solution, rougss inclination

tangent is equal to approximately 1, and curvesdftierent roughness inclination
tangents coincide.
At that, flow resistance coefficient for round gdipe is determined by formula

A =L2, Reynolds number calculated based on the averalgeity of flow
Rer [Ral
movement is equal tdR, =R, [2Resistance coefficient at infinite pressure is
16v2

proportional toA = . Here we demonstrate curves for solution

Rcr [2/(Rcr /50 -'-]-)]2J

obtained using one term of the series.

1004

Ed e N ——— ——
2 ‘ ‘ — I T T
1 I i
wr —NA——11— —H—
32 g | T I —
8 t \L-———-—-‘—J';‘-:.:;dw—! T
e Fle=2300 d X AT ]
b= Limre- o - I—1
| O " ::" il “F¥ 1
8 3 - : “"“‘Q =8 e e
_ 25 J, NP | _
_ S R o L
4 i = 2 w] . ; o
J w Rik=60 { Nikuradze (sand & Galavitch (technicaf |
j \ Rike1 26 15 ‘: _;“J roughuesi)_l_‘ - . rE)ughues) - - .\_\ | A —
— | | | al
7 o Rik=252 12 | ‘ 1 ! i
| | Rik=507 1 1|
Rike1300 ¥ £ 8 ;,?J Il 4 F ﬁﬂf 2 4 &8 0w p:
Re

oo 1oon 10000 100000 1000000 4000000

Fig.2 Calculated and measured dependence of rapeting resistance coefficient

versus Reynolds number for different roughness

To compare theoretical and experimental curvegsistance coefficient dependence
versus flow Reynolds number, experimental curv@llkyradze is given in Fig. 2, on
the right. Error of the theoretical curve relatteeexperimental one is about 10%. But

for laminar mode two solutions (1.1.2) and (1.1aB} possible. Averaged solution
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will yield zero convection term and dependente 64/ R, that is not taken into

account at the computation. In the theoretical euwenvective term is taken into
account which became equal to zero after averagifegninar mode.

This curve was calculated for constaawftemperature over the flow cross
section therefore in case of weak dependence efmatic viscosity on temperature
the formula will not change. For turbulent modeasinecessary to substitute into the

formula normalized pressure and ratio of pipelagius to roughness height
IRy RS +[T2/8-TRE 5
B={2/K(T.&)R, /1(T,6o) +11}°
={exp[= VT =Ty 1/a(&)] + &L -expl VT =Ty [/ (&)]}

1(T.$o)
K(T, o)

* {1+ 04explINT =T, BEN V&N &= 2

0

And the formula is constructed so th%(toi;))=fo. In case of the laminar mode
0,40

there is a simple formula for Reynolds numb&; =R, -/ R2 -T /8.

1.2. Algorithm for Solution of Internal HydrodynaariProblem for Arbitrary Flow
Geometry

Navier-Stokes equations in Cartesian coordinates is

3 _
M | > Vi avi,( - P LAV (1.2.1)

We will solve a three-dimensional laminar statign@roblem without convective

term for defined external actiog)

a—P = VAVi .

0%

Let us transform this equations to dimensionlessifby dividing it byv?/d?, as a

result we obtain dimensionless equation
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op _
=AR,
ay;
Pd? ) 5
RS :Vsd/V, p=—2,ys :S/d’hS = gsd /v
N

Following function is a solution of this problem

1 0

_ P
Rs(¥1,Y2,¥3) \.[ amtly - z| oz, “A9%20%

We will seek solution of continuity equation fortesnal action, where - response

to external action

oR i -zs ,0p
= %P _h\)dzdzdz =0 (1.2.2)
ox \‘[ 477|y z]20zg e

From this we obtain equation for finding of flowegsure

[ =5 :p dzydz,dz; = [ 5~ hdzdz,dzs.
v 4rly -z|° 0z v 4nrly-zf
N
We will seek the pressure value in the fop > a,@,(2,25,23 . Then we will
n=0

substitute pressure into expression under the rnattegign, multiply by

¢ (Y1, Y2,Y3), and perform integration over the volume, thenobt&in a system of
linear equation
b = Aman -

Expressions for coefficients are

-2 00,(2,2,,2
Am=j j Bn(V1 Y2, Vo) 55 0222 28) 7 17, izsctysdy s
Amrly —z| 0z

b =[ [ #m(¥. Y2, Y3)—h (71,25, 23)dz1d2;dz3dy, dy,dy3
vV V 4y - Z|

where hy (y1,Y>,Y3 ) is defined by external action. Let us transfornvidaStokes

equations to dimensionless form by dividing it\®/ d*, and we have dimensionless
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equation
3
@4.2 Dkaﬂ=—$+AD|
or o3 Oy 0y
2 2
[, :\/I_d,yl :X|/d,T=tV/d2,p:P—dz,h| =g d_zzﬂ
v o ve oy

Then we multiply Navier-Stokes equations by areflcav tube cross section, write

the equations along laminar solution and enter flolbe with constant flow, see

[8]. ro= f Dsdss/dz. In the convection term and in pressure gradieetenter
Ss

the derivative in the direction corresponding te ttirection of flow lines in

laminar solution. When substituting of the solutioto equation

M =a,(DRIyi(a.0).y.(a.h).ys(a.5)] (1.2.3)
where S. - flow tube cross section in laminar mode, expoess
Rivi(a,pB),y-(a,p),ys(a, )] is a stationary solution of Navier-Stokes equation

without convection term which is equal to zeroflowv tube as it does not depend
on longitudinal coordinate.

We built these flow tubes for any exteraation which affects pressure
difference. Further we consider roughness and uederin conditions obtain
complex turbulent solution which is associated wittiluence of quadratic
convection term with small multiplier, taking ind@count roughness, which yields
complex solution at large pressure difference. ¥ same time, we reject real
solution which was obtained for another sign of thedule of average deviation,
as it does not define fluctuating, turbulent santiAnd imaginary part of the
solution defines the solution pulsations.

If another sign of square root is chosen @rdelation function of the process
<u, u, >, whereu, is a velocity deviation from its average valuetdaken into

account, turbulent viscosity becomes negative.

Let us substitute the solution (1.2.3) into Navi@okes equation, integrate it over
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flow pipe and divide by pipeline cross-sectionataarThen the convective term

will be equal to

3 ol da

> Oy——=-a(n)— | Re[y,(a.B).Y,(a.B).Ys(a,B)ldadp

k=1 Y dsss
Taking roughness into account results in deperelehthe pipeline radiugg s( 9n
macro-roughness. Further we will extract the telag/ds associated with roughness

and will find average value of its module. At trerse time we will make averaging
of the equation with respect & It can be found out that convection term in laanin
mode for smooth surface is equal to zero, and noesghhas to be taken into account
for non-zero value. So, we have the equation

0 [ pdadp
j R —= aRS dad,B——

0s

+a, | ARdadB.
S

To take into account roughness oklme surface and obtain turbulent
solution, it is necessary to consider the averagdube of tangent of roughness
inclination angle. Then this convective term wilve a small multiplier, and the

convection term will be non-zero. This term is udmnal to average value of

T d d :
tangent of module inclination at roughne@lsdﬁ—<ilo >[>. At the same time,
S

ds

< >
there is a term depending on variable pipeline Ection areadd%ao. And
S

flow lines of complex turbulent solution corresporglto flow lines of laminar
solution will remain the same but there will beaddusion pulsing around laminar
flow lines. At that, the pulsations are defineditmaginary part of velocity, and the
imaginary part of the solution, equal to a constameans pulsations with
amplitude equal to imaginary part of velocity.

Now, we will substitute the solution (1.2.3) int@WNer-Stokes equations and will

integrate along flow tubes, will multiply bR, in domain where this value meets
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a conditionl/ R, =<|tana |> and where<|tara [>- average module of inclination

tangent for not removable micro roughness with &pe forming macro-

roughness, and we will obtain the following equatio

day(7) _
dr

=Ry <20 > 41 [ RIN(@.5).ya(a.8),:(a, A1 dadp

Rcr Fsas2 - 2Rcr asGs +H s

G, =~ [ AR|[y,(a.8).Y,(@.B).Ys(a.B)dadB/2>0

.= _J' ap[yl(allgis)’y2(aC;lﬁ1S)ly3(alﬂ’ S)] R:rdadﬂd3>0

S

S

where R.(Y,Y,,Y3): P(V1,Y,,Y; ) are determined from laminar solution and
continuity equation, and function of external actio(y;,Y,,Y;) is defined. So it

was found out that micro roughness located alohigrdth of the pipeline defines
critical Reynolds number. This micro roughness d@ssl than macro-roughness
which affects resistance coefficient at large Réymamumbers. But as Reynolds
number depends on pipeline geometry through itseliar, then critical Reynolds
number is inversely proportional to the average umwdf tangent of micro
roughness inclination and depends on pipeline geggmat the same time,

reduction of pipeline radius results in negatida,/ds value and, therefore,

absence of complex turbulent solution in the narmplace, i.e. the critical
Reynolds number raises. On the contrary, the mpediidening causes increase of

da,/ds and, therefore, reduction of critical Reynolds @mand can result in

earlier occurrence of complex solution, i.e. thddtlent mode.

And, as Reynolds number depends on temtyrer through dependence of
kinematic viscosity on temperature, it is obvioumatt occurrence of critical
Reynolds number depends on environment temperature.

Coordinates of equilibrium position are defifeom a quadratic equation
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APA°R, R = Rcr

2R.G, . H
2 — 2 _
as -a, Frs s + F: =a-2R a, +T )., =0T, = ,021/2L .

S

At the same time, the laminar solution = R —J(Rjr)2 -T,y, becomes more
exact and at small pressure difference transfexs linear laminar solution
=Ty 1(2R3).
In this case, turbulent formula foughbness calculation is applicable

due to identical averaging method in turbulent mode

%_%;4(& (R)?, | _(RS)?
JTTJT’S'VS fJ YT sAexpm

A ={2/[k(Ts,<‘o)Rcr N(Tsé0) +11°

where k(Tg,ég)/1(Te,ég ) - effective average tangent of roughness

inclination, & - ratio of roughness height to pipeline radius antical Reynolds

numbera. = RS is value of Reynolds number corresponding to tbgirining of

the complex solution. At the same time, for smadly®olds number we obtain a
laminar solution. But difficulties in obtaining ¢dirbulent solution do not come to

an end. It is necessary to define effect of théaserroughness and for this use of
experimental data is still inevitable. In principlkexact dependence of Reynolds
number for smooth surface on macro-roughness isssacy to be learned. But
external problem has some features associatedexitttence of resistance crisis
which is caused by presence of a trace behind ddg placed into the flow. This

trace does not present in internal problems sudloasn pipeline.

1.3.1. Specificity of Flow Velocity Calculation f@&phere

Let us find out solution of Navier-Stokes equatidas external problem. We have
laminar solution for sphere motion in fluid for dhm@eynolds number. It yields the

following velocity distribution, see [8]:
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3
V, _ucose(l—% +a—)

: 3a
V,=-usindl-—-—
6 ( Ar 4r3)

(u,n)a
rz

At that, pressure dependence on flow parameteps=ip, —gpv

Motion equations in spherical coordinate systemstutions which do not depend

on angleg can be written as

2 .
vV, + (V0N Ve _ 16p+ VAV, - 2\2 - ?2 6(\/6,S|n9)]
ot r p or r r<sincd 96
Co e (v OV, + e == LB yay, BT
ot r o 06 00 r?sin’*@

100%,), 1 a(sineV,) _
r2 or rsind 06

(v,0) = Vi \Li ii( —)+— —(sm@—)
"or r 98’ r’or - or rsmH&H

Let us change coordinate systemd&a,6 with unknown R ,R; P, the coordinate
system is defined by formula=d¢&/2t=d?r/2v,V =Rv/d, p=Ppv?/d?, after

division of the equation system 2y?/d* we will have equation system

2 0 ing
aa;RTr+(R,D)Rr_RH al:("‘ [ Rr lEr Q(ZSiznzg (Réésgln )]
R, RR,__10P 2R 2R,
or +(RERy + g 569+2[ARH+52049 fzsinze]

10(¢*R), 1 A(sinéRy) _
E2 or sind 96

9, R0,
(R.0)= Rraf 30’ 5265(5

af ez neﬁ(sme_)
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At that, in dimensionless constants, solution camxpressed as

R =R, ROcos@(l—i )

"Ry 28 28°
rRR 3 _1,),- _ud’
R, =-R, Rcr sin@(1- 2¢ 453)’61 d/2,R, ;
— 2 2 _ (Rosn) — 2 RO sin26 i
P=p,d°/pv 352& pod?®/ pv? Rcr 25 a- 26 4<()

But if you consider solution for one doma#il[0, 7], zero value will be obtained for
coefficient R,. So, the domain should be divided into two p#ts[0,8,], 611[6,, 7 ]
and value g, should be found out of equality dR, coefficients computed for
different domains. At thaR, - common for either of Reynolds number components

as laminar solution.

R P o2+ 190 3
<R, C0s o 26 25)66( 25 25)
3 1 sme
a0 5
sin’ g 3 a 1 9
; Yue 453)]_ TPy Y 45)

3cost  2cosf 3 N 1 N 4cosd 3

PR s T e W ) T aaging N T s T

=]

Here we will show how to find solution for the firsquation, solution of the second

equation can be found similarly. For this, for mi@ problem, we will multiply

equation byr?sin@rdd. For external problem, we will enter variabllez1 for

&0[40] and the multiplier will be foIIowmgSl(ﬂdglzdé? Let us write down the

equation with all multiplies:
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Rf%[cos2 @sing( 34 - 2; _4?5 +£_3;_4_; N

+(%_4?4 +8?5 +4<1f e 3)sin” 6 =sin 9(— 1;5 +16159 _

_ 2::4 _ 2;6 + 857) =3sinzesin9( -2 8?5 . 8;7) o
RIS ) O )

Integration over the anglg0, 7] yields zero right part of the equation. So, it is

necessary to divide this solution into two domaarsd match solutions at the
boundary. At low velocity, this solution will beakbut it is possible that the angle is

complex.

Let us integrate this equation over two domai&l[0,6,], 5D[Ol] and
1
QD[QO,H],?D[O,].], then

cos’ 8,

Rz T [(L-cos’ §,)0.003571 (g —cosf, + )0.01473 -
"R, ’ 3 0

r

sm3<90

— 2R [(1-cog 6, )035+ 0.175sin6,] + 0.10781sing, - )=0

Equation for another domain is

co§ 6,

R? %[(u cos6,)0.00357 1 (% +cosf, - 10.01473 -

r

— 2R [-(L+ cod 6, )035- 0.175sind,] — 0.10781sind, - sm3€0) 0

For laminar mode and very small Reynolds numBgk< R, , we have following

expression for Reynolds number
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S|n390 sm3¢90

0.10781sind, -

)/2  0.10781sing, -

)/2
(1+c0529 )035- 0175sm9 (1 cos 8, )035- Ol758|n9

Solution obtained is symmetricall, =7 /R =0.8214. If non-linearity is taken

into account:

R =(b-+b*-ac)/a

a=0.003571L- cos'6,) - (é ~cosh, + cos°’ 6,

)0.01473

= [035(1- coS’ §,) + 0.175sing, ]/>’
S|n36? 0)

c=0.107813(sing, —

Ro

Where parameter— =1/ is defined for area of Reynolds number increase.

I

Another solution is:

co§ 6,

a=-0.0035711+cos’ ;) + (% + )0.01473

= [035(L+ co’ §,) + 0.175sind, ][3 |
sm36? 0)

c=0.107813(sing, —

And complex Reynolds numbé&t, corresponds to beginning of turbulent mode.

If you take into account all coefficients, sotutig, = 71 /2 will not be obtained but
you will have two values for coefficieri,. It will be found that two angleg,,6,

exist for each Navier-Stokes equation which comaspto two different variants of

domain division. In cas&, - @nglesg =n /2are equal, we hav® (§)= 1/2
Coefficients R (6,) = R,(6,),R;(6;) = R,(6, )will be found from two Navier-Stokes
equations which will be integrated separately a@l@nains[0,6],[8,,71 ] At that, the
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two first of the angles will be found from the fildavier-Stokes equation, and the
third and the fourth — from the second one.

Final solution will be found in the form

R < .
R =0, HZ; R (6)cos@ - 6’+2)(1 25 25)
__ - R< Ty 3 _
Ry =—Uyg HZ% R(4)sin@- 9+2)(1 45 453)
) ) , R, 4 Sin2(6-4 +§) 9
P=Fpod”/ pv7 =3 Z 282 4= 28" 483 )]

We substitute the decision in two equations of Biawvi Stokes and in the continuity

equation, we average on space and we find thestayi solution.

And Cartesian components of velocity are etpal

Ry =R cosf+ R,sind + R,
R, =R sind - R, cosfd '

For the following examples initial data were takenich do not match the solution.
Fig.1l shows a plot for real angles versus two angtel on condition
6,=6,=n/2-016,=6,=n/2+0LR(4)=1LR,=15. And for all plots
O, =0,=1
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Fig.3 Fig.4

Next Fig. 2 shows results for Reynolds numbeR, = ,15@&ngles
6,=6,=n/2-04,6,=6,=n/2+04,R () =1. The more is Reynolds number, the
more is deviation of angle§ from 72/2. Fig.3 shows flow with Reynolds number
R, =5000 and complex angles
6,=6,=n/2-05+05;8,=6,=n/2+ 05+ 05;R () =1. Two singular

domains are seen in front of the sphere and behadphere. In these areas, velocity
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corresponds to tangent line. Plot in Fig.4 wasuated for the same parameters as
plot in Fig.3 but Reynolds number of the body isi@qto R, = 50000 The flow

parameters are maximal, pattern remains the sarfioe parameteiR, = 5000

W

Puc.5

Fig. 5 was plotted for parameters

6,=6,=n12-056,=6,=n/2+05R (6)=01LR,=500. Velocity distribution

Is so that there is a singular domain in fronthedf sphere — incompressible fluid can
not penetrate into this area. And this area, insgibke for fluid flow, has large length

that provides conditions for origin of long vorteath.

To change pattern, it is necessary tcgbaangular boundaries and relation

between coefficient’ (4 .)Besides, at large Reynolds number, imaginary part

increases and, hence roughness effect is ratlyg. lar
For incompressible liquid the e of continuity along a current tube

with longitudinal coordinates has an equation%+%=0. As the normal
S n

derivative from a normal component of speed is etpuaero for border of a special
zone, we have constant longitudinal speed on boofea special zone. The

convective term on border of a special zone is leiguzero. At that critical Reynolds
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number for external region off the body is equal—tl&—ii where a -
R, 2300l

specific body sizel, - length of the smooth body envelope when condiid

complex coefficientR (§ )eginning is satisfied. Ratiea— Is found from non-linear

cr

equation forl, finding, which corresponds to beginning of compdeiution.

For the plots computing, following equationtsys was resolved in dimensionless

coordinate system

dx dy _
—=R;—= =R/, %, =2y, 0[-44].
at X gt 1 Xo Yo UL ]

For this, we write down new formula which is nee@ggsto substitute to Navier-

Stokes and in the continuity equation, to averdge dolution and to define new

multiplies U, ,[0,,P by which the solution will be multiplied

R =0, RO {R (g)[cos@-Req +—)cosh(|m9)—
e

r =1

~isin@-Ref +—)smh(|m6?)](l— 3 —)}

28 " 283
R, =-0, -3 (R (4)[sin@-Req +—)cosh(lm9)+

r =1

3
+icos@ - Ref +—)S|nh(lm9)](1— " 453)}
3R 1 49

xz [sin2(6 - Red +—)coshQIm€)+|c032(€ Refd +—)smh(2|m€)]

=1

Let us draw the curves for real bamas of the area definition.
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Fig.6 Fig.7

Difference of coefficients for two solutions in different
areas

Difference of coefficients for two solutions in different
areas

Fig.8 Fig.9

Vertical axis characterizes module of differencéneen coefficients calculated for
two different areas. On horizontal axis the realad, is shown. In Fig. 6, the only
root for small Reynolds number is shown. In fig. thhere are two real roots

corresponding to the laminar mode with Reynolds lbemequal toR, = 100

In figures 8, 9 complex roots existence is showne troots are equal to
6, =1+ 05,6, =2+ 05 . The imaginary axis values change in interi@&P], real

axis values — in intervdD, 71] .

1.3.2. Description of Singular Domain

At that, solution for fluid flow hagsliscontinuous zones, velocity
perpendicular to boundaries of these zones is Zdrerefore fluid in these zones is

independent of main flow. But tangential velocitgngponents on boundary have to
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coincide. Now we will find the solution in thesenas. Real part of the solution

R=R +iR, corresponds to component the imaginary part - to componext and
the x axis rotates around the axdz with change of angle . But the solution is to

be found for fixed angle and should not be depehdethis angle. Then the solution

of Navier-Stokes equation will be

N
R= > b,,exp(n®+iminp,). (1.3.2.1)

n,m=-N

Where new scaled angular variable 277(8 — 8™") /(6™ — 6™") is entered,

where 8™ g™" - extreme values of turbulent zone boundariesidgss we will

enter the scaled radius

In o, = Inr/a™ (6)
° In[a™(8)/a™" (8)]

where a™*(6),a™"(8) - maximum and minimum value of radius of the tueml

zone boundary. In case if denominator is zero,evalg \/amaX(H)ami”(H) should be

used forl. ThenInP will be continuous and equal to in this point. Coefficients

b,, will be defined from values of the laminar solutiavithin turbulent zone
boundaries =a™" (8),s=a"(6), whered[8™",6™].

Coefficientsb,, will be determined by formula

2 2l

[ ] Rir(in oy, ®),W(®)] exp(-in® —imin py)d In od =

0 O
=b,, /47
As boundary values at the beginning and the endhefperiod differ and area
boundaries expressed in coordinate8 are not rectangular (in coordinatésin o
velocity on the boundary is variable), a series Ww#& discontinuous, that is, the

coefficient b,,, decreases a¥,,~1/(nm Wwhen nm - o, i.e. this solution is
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discrete. In singular domain, in coordinateso,®, the solution is discrete due to
discretization of functionsR(In p,,®) in the form of discrete series. But as the
description of singular domain is performed relatito coordinatedn p,,®, the
singular domain is discrete. Vortex path or pulstagoulent mode with variable
boundary is formed in this area at laminar mode.

The formula (1.3.2.1) can be rewritten in thenf

> Dy exp(n® +iminpy) = Y. A, sgn> - ©%)sgne’ - @)
n,m=—N n,m=0 . (1.3.2.2)
sgn(Ino, = In o) sgn(Ingy, = In o)

where in this case we haggn() = {]6 ))((i% and then step with amplitude

and phaseapb?,In p°, o In ot will be found from equations

N
4D, = Y. Ay Sinn(@, — @)/ 2]explin(®]) + @) /2]
p,g=1 ’

sin[m(In o —In pg)/2]expim(In pg +In pg)/2]/(nm)
where indexe$,m=-N,...-11,...,N.
It should be noted thaf,,, =b,,. If the series in the left part of (1.3.2.2) istno

summarized directly as this requires too large remab terms, then the right part of
(1.3.2.2) will determine its discrete sum for fextumber of terms. It should be noted
that

D0 +27p<sd <Dl +27p,Inp° +2m<Inp, <In o + 2
Is almost periodic coordinate of the step.

Why the turbulent solution in gilar domain has the pulsing character
with variable boundaries? The turbulent area boniganot smooth function due to
discreteness of the turbulent solution, unlikel&iminar solution. This results in non-

equality of tangential component of the solutior doundary pulsation in case of

turbulent mode.
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For description of laminar flow, it isecessary to enter dependence of

specified radius on time
Inp=[In p, - w277 - D) [472(P - 1)/ 7T, c0= 2@%

where Sh is a Strouchal number. At that, the pattern wikcfuate with Strouchal

frequency according to value df p, and this will lead to vortexes rotation in
opposite directions as the frequencies under dondi® =71/2,® =37/2 have

different signs. At the same time, on the area Haon frequency is zero, i.e. the

solution on boundary is continuous in laminar mode.

1.3.3. Solution of the Flow Problem for Arbitrarypn8oth Body in Spherical
Coordinate System
Laminar solution of the flow problem for arbitrabbody in spherical coordinate
system we regard resolved in the form of final folan That is, value of Reynolds

number and pressure for laminar mode is found:

:& 2]
R = .09
Rg:%gg(f,e,m_
R, = FF:'; 9, (£.6.9)
p=P(R, £.6,9)

szg dide, integration
$

We resolve each Navier-Stokes equation by multngjyby

over inverse radius and angie over two areas, which have one of the boundaries
6,1 =12. We defined this boundary from equati®[6,,(¢),¢] = R [6,,(#),¢ . Ab

the equation for these angles finding is the seategtee one, two angle§,,,6,.,
are found. We define valu, (¢ fdr laminar solution and consider this in formula

for Reynolds number taking area boundaries into@atc
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We do the same operation with other camepts of Reynolds numbers.

Further we find out the solution by entering fonkoown constants

R =0{9,[¢.0-6.(¢) + 6, (9).8] +9,[$.6 - 6,(9) + 6, (4).9]} R,
Ry =U g{ 9p[<,0 = G5 (@) + Gop(9), 8] + 9y[<.6 — Op(9) + 65 (0).01} R,
Ry =0 4{04[¢.60 = 6,,(9) + 65y (£). 0] + 9y[<,60 = 6,,() + 65 (#). 41} R,

P=P{p[R).<,0~6.(8) + 6 (9).8] + PR, .60 = 6,,(9) + 6, (#). 4] +

+ PRy, $,0 = (@) + 600 (9), @] + PIRy,$,0 = Opa (@) + Gpp (8), 8] +
+ PRy .<$,6 = 651(P) + Gpy (#),8] + PIR.$.0 = O,,(9) + 6, (), 01}

We substitute these functions into Navier-Stokaesaggns and continuity equation,

(1.3.3.1)

we integrate over the volume and then we obtaiorstantst ,[,,0,,P. These

coefficients can be complex describing the complekulent solution. Real part of
the solution will be an average solution, and imagy part - mean square deviation.
At that, as the angle enters into solution functiomon-linear way, it is possible to

integrate on periodic angk¢ without obtaining of zero integral. When solvingna

linear equation, there can occur complex functiGn(@),6,(#),60,(#),1 =1 . 2

Similarly, it is possible to find the problem sotut for sphere, determining not
laminar pressure, but such solution will be congikd. It is possible to add angle

dependence of the sphere solution versus apgte Cartesian coordinate system and
to solve a problem defining,(#),6,(¢ , Yhen dependence of the solution on arggle

will be found. At the same time, it is necessarykéep dependence on spherical
coordinate system at Cartesian components versiscitye and pressure. In

curvilinear coordinate system, the derivative itedained by formula
0 _ox(r.6.¢) 0 +6x2(r,9,¢) 0 +6x3(r,9,¢) 0
or or 0%, or 0X, or 0X3
0 _0x(r.6,9) o +axz(r,é?,¢) 0 +6x3(r,9,¢) 0
08 08  0x 068  0x, 00  0xg
0 =6xl(r,9,¢) 0 +axz(r,H,¢) 0 +6x3(r,6?,¢) 0
¢ 09 0x 09  0X%, 09  0x

Where
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X (r,6,9) =rsindcosy; x, (r,8,¢) =rsingsing; X;(r,6) =r cosd

From this we definei through dependencg—,i,i. The second derivatives
0X, or 060 0¢

with respect tox, can be found similarly but in this case dependemtemixed

derivatives with respect to,8,¢ will occur.

2
2 2. {9,[,0-6,(9) + 65, (9)]cOSO + go[&,0 — B, (§) + Go (#)]SiN6} cOSP
r =1

[
Ry =€y 19:[¢,6 -6, (@) + 6 (P)]cost + gy[<, 0 = 6, () + Gy (P)]SING} sing

ro =1

= 2. {9:[£,6-6,(9) + 6y, (#)]sinG - gy[&,0 - 8, (¢) + 6y, ()] cost}

ro =1

R, =

R, =

R
At that, as ?y;ttamﬁ, velocity component R,  will occur. As

X

Oy =6, 6, =6,,0, =0, this dependence vanishes at small Reynolds number

2. Physical Meaning of Complex Solution.
Let us explain physical meaning of the complex uilght solution. So, we will

consider real solution of ordinary differential etjons systenx,, (t) .
Letus assume that initial data have an average vgjuand mean root square
<[Ax0]? >.
Mean root square of initial data for Navier-Stolexguation is defined by surface
roughness or by initial data which are not pregissfined. Then, for mean root
square of the solution we have
<[AX]? >=<[x —<X >]*>=<xZ >-2<X ><X >+<x >*=<x*>-<x >,
Then
<x?>=<x > +<[Ax ] >=kx >4 <[P >E (2.)

Here | will provide the formulation of inverse Pgtioras theorem. For any three of
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positive numbersa,b and ¢, such thata® + b® =c?, there is a rectangular triangle

with legs a and b and hypotenuse. Hence, mathematical mean value and mean

square deviation form legs and hypotenuse is amageesquare root of the value.

That is, average< x, > is orthogonal to mean square deviatigz‘l:i[Ax,]2 > which

forms imaginary part of the body coordinate. Thtlse Cartesian space with

oscillatory high frequency velocity (period of fluation is less than measurement
time), obtained as a result of averaging in timegdmes complex space. That is, In
case of large mean root square of the real spaskould be considered as complex
three-dimensional space where imaginary part cooreds to mean square deviation.

At the same time, there s following relation betwe variables

<X > =(<x >+i<[Ax]? >)a,|a =1, and the complex number is chosen in
such a way that the imaginary part had positivenegative value. Mean square
deviation satisfies this condition. But sometimé® tmean square deviation is

positive, for example, in case of dielectric perlmkity where positive and negative

: . dnio
charges have an influence. In this case we hawvenaufa c = ¢, + where real

part is proportional to positive mean square dipdé¥iation and conductivity is
proportional to average value. But conductivitydigsided by frequency which has

positive and negative sign.

Therefore, algorithm for finding of averag@ution or average solution in phase
space and its mean root square is reduced to graficomplex solution. The average
solution corresponds to real part of solution, aedond power of complex part
corresponds to mean root square of the solutiois. iSlphysical meaning of complex
solution, real part is an average solution, andgimary part is a mean square
deviation. And real and imaginary parts are ortmajcand form complex space.
Really, according to inverse Pythagoras theorera,tduormula (2.1) mathematical

mean value and mean square deviation form legaasihge square is a hypotenuse.
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Here we would like to note that when calculating flow motion and one term of a
series is taken into account, it is necessary ke &muare root of imaginary part as
forward velocity is calculated. The imaginary padrresponds to square root of

oscillatory part of dimensionless velocity.

This situation is similar to calculation @é¢viation at random choice of forward

or back step with probability %2 and the point positafter N steps is defined by

VN

Real and imaginary parts of the solutiamlacated on different axes of complex

space. But if you average imaginary dimensionlessg pou will have

< Xgr (1) > iy < [DXg (D] > - < Xq (1) > +4 <[Axg (1)]% >

And the solution is equal to the module of the ladtie and, for different roughness,
the imaginary part of the solution should be milkipb by averaging multiplier. At
the same time, if all coefficients of a series ion#dinear equations system are
calculated, it is not necessary to calculate squact¢ of imaginary part. It is

necessary to summarize complex values and to edécoiodule of the sum.

Now we will show that the imaginary rppaf complex derivative of

coordinate in phase space of the differential eqnaforms pulsing coordinate

motion in phase space, i.e. in space of variablgdqt) > +i\/<[Axk(t)]2 >,

Average values are used for variables as, at mialedevel, the medium is not

smooth.

Lemma 5. Complex solution yields fluctuating pugsifunction of flow motion

coordinates.

The imaginary part of velocity corresponds to riotatspeed in phase space. As

rotation radius is known, it is also possible tbedeine rotation frequency. In the
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rotation plane, complex velocity with constant tmta radius and constant

frequency can be written in the fo) +iV, =V expfat . )
In case of varying over the space statypspeed, locally, this formula can be
t
written for one plane a¥/,(x,y)+iV,(X,y) =V, (X Y) expﬂj aw(X, y,u)du], and
0

frequency is dependent on time as the phase shifirovided as a result of
harmonic oscillations in neighboring points. Sumhafrmonic oscillations with
different time-dependent frequencies defines pglsnode in phase space at
stationary complex velocity. That is, this complietocity defines the coordinates
of phase space points pulsing in time. The sitnat® similar to existence of

several stationary vortexes defining the pulsirigtron of the flow.
Lemma 6. Three-dimensional flow velocity can betten in the form
Vi =V, +iV, =V exp(g)), ¢ =arglVy +iV,).

And velocity is defined in the form of integral @@ingent acceleration by formula

t dJ > Vi )V ()

V, = I t (U)w, (U)du +V, (t,) = j t (u)—2 - du+V (to) =

. d\/z [Vie (U) + Vi ()]
=[ tw—"= du+V, (t,),

du

Integral of perpendicular component of acceleratiefines perpendicular component

of velocity by formula
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T T 2
Vi =ImV (o) = j W, (u)du = j A (“L'('S)‘V |
S | ImV[[t,(8) ~t, ()], ImV |= const

ImV |dt, =< %
I [ImV ldy J' [ ImV | dt, ,|ImV |# const ’

%

3
> Vi (W) + Ve 1=V dty () =
k=1

5 n,(s)
du=| [ImV(s)|——ds=
Sjo|m Sl

&

n (s)ds, ImV,
(1) =
P(s) [ImV|
At that value of local velocity i, (7,) =ImV, (7,).V, (7,) = ReV, (7,) . But value of

velocity obtained as a result of integration of togetal acceleration is not zero

(V, (1) #0), but this velocity become equal to zero for tlans initial point, at

constant particle velocity and constant curvatacbus with rotation period = |V 3

where R - curvature radius. For variable particle veloaigpending on time, when

T
one of the integrals_f |V |dt, = ,0which, at finite curvature radius of one sigrtlod

)

2r StSr So+St
trajectory, is finite and equal td@ = j R(¢)de _ _ ds

> V(@) I |V(s)| LR

tangential directioni, , changes sign in the course of rotation.

Tangential acceleration is defined by formula

3
:d\/z [ViZ (1) + Vi (D] /t .
k=1
Direction of velocitiesAV,;,AV,, is orthogonal, their sum yields increase of motion

velocity  module 23: (dV,)? —Z [(dV,)? +(dV,)?] = 23: |dV, +idV, |?, as

=1 =1 =1
3 3
> W)*=>" [(wy)*+(w,)?]. Components of these projections, differentiable

with respect to time, define tangential and orthm@@ccelerations. At the same time,
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concepts of tangential and orthogonal velocities emtered which, in the Cartesian

space, are not orthogonal ¢g,,V,) # 0, but in six-measured complex space they are

orthogonal, and their module of complex vedtprV,, +iV,; is equal to

Z |V| Z [(th) "'(an)] z Vy +1V, ||2

3 3
It can be proved by use of expressM[n:Z V&, V, :Z V., €, and calculation of
B E

module as product of complex conjugate vectorsitakito account orthogonality of

Six real unit vectors.
Conclusions

Thus, solution of Navier-Stokes equations for nafitiple equilibrium positions is

obtained. It is defined by expressions

VD) =Y X, 0(1)
S

>IN -a%) [ =H, ), =1...2N

s=1
=1/[(& - &)..@ —a™)(@ —a™)...@ - &)]
where values® are coordinates of equilibrium positions.

Laminar solution corresponds to the solution oééinproblem with convective

term averaging; structure of turbulent solution is

V(t i
)= nZl k;mg(t) gnk<tn)¢” @

whereg,, {)- known defined continuous function, value@ (t.) = g, (t,, X0) + /m

is defined from initial conditions, andim g(t) = 0. At that, the solution contains a

to o

lot of poles which, for real solution and reali@litdata, yield infinity.
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At real time and complex initial conditions whichefthe complex value of
0.4 (0, X)), and, asy(t) is real, the complex solution is finite.

At that, formula
il K0 - af) [ = H (L) =1..N . (2.2)
p
may have branching points in which the solution ticmously passes into other
branch of the solution. This does not contradiet tifieorem of solution unigqueness
for Cauchy problem as the left part of the différ@nequation tends to infinity in
branching point. Derivative of right part of ordigalifferential equation also tends to
infinity in branching point. So we have a point difcontinuous solution. But this
solution can be continued by a formula (2.2).
This situation is similar to Schrédingemuation when generally we have finite
number of solutions. It is not surprising as Scim@dr equation can be reduced to

Navier-Stokes equation. Now we will prove it. Fdrist we will write down

Schrédinger equation and will transform it using uady
0%y azlnz/l 1 az//

oY RS azl// 7 0? Ing , 1 0y,,

h——=- +tUY =— +U

"o = Tom e TV om 2[62 "y la) 1YY

Dividing the equation by massy/ we obtain the equation

i olny alnz// n 3 azlnz/l
- + =
"m ot 2m2.z_1: ( ) 2|Z—1: 0x’

+U/m.

Now we will write a private derivative equation,IMieke a gradient of both parts of

equation and will enter real velocity to the foraM = —iEDh’ll/l.
m
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2;
2 3 . 3 0 |—Dlnz//

ot m?i ox 0 2miZ ox?

8" iy
m

Substituting velocity value into transformed Schngeér equation, we have

GRY ou , . _ i
Z b= /myv=—.
S X oxP 2m

p + V

; %
Now we have three-dimensional Navier-Stokes equatith pressure corresponding
to potential. Nevertheless, the hydrodynamic pnobtiffers from the equation of

Navier-Stokes derived from Schrddinger equation@ndinuity equation.

At the same time it is possible to drawamalogy between laminar single-

value mode and free, single-value description alidm

Between turbulent mode, having finite numbgsolutions, and description of
bound particles having finite number of solutiohscase of turbulent complex and
laminar real modes there is a boundary between #rahcritical Reynolds number.
The similar boundary is available between free &ondnd particles description,
which corresponds to energy transition from ne@gatio positive state. In turn,
Navier-Stokes equation has to have discrete enexgts of turbulent flow states,
transitions between these states with energy emnissr absorption have to be

realized.

The boundary between free particles descriptionlenahd particles description can
be defined, this is transition to complex quantwmmhber or to infinity of the main

guantum number of hydrogen atom. At that, infigigantum number of hydrogen

atom, passing through zero value of expresdibn® where n - main quantum
number, becomes imaginary and continuous. Waveitmof free motion, which is
continuous at continuous energy, corresponds tanemsolution of hydrodynamic

problem for which single valued solution exists.dAior large quantum number, the
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system is quasi-classical, i.e. for quantum numivarch is close to boundary
(quantum number is equal to infinity) system is@trclassical.

And there is a boundary between free goiluand solution which describes
bound states. This is zero energy value and, |l&ewion-linear private derivatives
equations, boundary exists between turbulent camptdution and laminar real
solution.
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