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Abstract 

Values of large dimensionless unknown functions (for example, a large Reynolds 

number) can be found out as solutions of non-linear partial differential equation. In 

this case these equations can be brought to some number of non-linear ordinary 

differential equations. Turbulent solutions corresponding to large values of unknown 

function are complex. Transition from real solution to complex turbulent solution is 

realized through infinity of the right parts of ordinary differential equation system to 

which Navier-Stokes equations are brought. Thus, real solution of Navier-Stokes 

equation for turbulent mode yields function going to infinity. At the same time, 

complex solution for the turbulent mode is finite. Fluid flow resistance coefficient is 

calculated for round pipeline with different pipeline walls roughness. 

Problem Formulation 

Let us consider Navier-Stokes problem and continuity equation for incompressible 

fluid. They are as following 
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Boundary conditions on the body boundary adjoining to fluid are St ∈= rrV ,0),(  

where S  is a body boundary. We will seek a solution in the form of series using 
Galerkin method (hereinafter  )∞→N  
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where space 2C  is twice continuously differentiable function, )(0 rψ  is a defined 

external action which, in case of pipeline, is equal to PLzPP +−−= /)()( 00 rψ , 
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where z  - direction of the pipeline longitudinal, 0,PP - pressure at the beginning and 

the end of the pipeline, L  - pipeline length. 

Now we substitute these functions into the differential equation, multiply by 

)(rmψ  and integrate over the volume, then we obtain following differential equations 

system: 
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After we resolved the second equation (A.1), substituted 
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Defining Nntx Nn ,...,1),(3 =+ , corresponding to pressure change, from the second 

equation (A.2) and substituting found out value into the first equation (A.2), we have 

equations system 
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At that  
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Where values  

                    Nntxtyltxt NnnlNnnl ,...,1),()(;3,...,1),()( 3)1( ==== +−+x .  

are known and coefficients nmnmmmpmpqmmpmpqmmpmpq bcHGFHGFHGF ,,,,,,,,,, 222111  are 

constants. This system of non-linear ordinary differential autonomous equations (A.3) 

is to be solved. Solution convergence issues will be discussed below in the text.  

1. Finding of Solution of Ordinary Differential Equations in Complex Plane 

Let us consider system of non-linear differential autonomous equations 
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l ,...,1),,...,( 1 == .                        (1.1)            

Navier-Stokes equation system and continuity equation can be brought to system of 

non-linear differential equations: 

  NmccQHtcGtctcF
dt

tcd
Nmpmp

N

p
qpmpq

N

qp

m ,...,1;),...,()()()(
)(

1
11,

==++= ∑∑
==

   (1.2) 

where three-dimensional velocity is defined by formula 

),,()(),,,( 321
1
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= . At that, function ),,( 321 xxxnϕ  is given in the 

form of sine or cosine. Then coefficients )(tcn  for continuous function decrease not 

more rapidly than 2/1 n  when index increases and series reduction is possible, i.e. 

instead of infinite number of terms, finite terms number is used. At the same time, the 

infinite number of terms forms convergent series.  
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It was found out that a set of 1+N  coordinates for the system equilibrium 

position exists (1.2). Indeed, let us assume that we have found several equilibrium 

positions with coordinates Nlbl ,...,1,0 = . Let us seek the solution in the form 

s
lll bbb += 0 . For that we will substitute the solution into the right part of the 

differential equation (1.2) and will equate it to zero, then following equations system 

is obtained 
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For existence of non-zero solution of this differential equation, it is necessary that 

determinant is equal to zero: 0|),...,(| 1 =s
N

s
kl bbA . Given zero determinant, coefficients 

s
lb  from linear equation will be defined up to a multiplier. This multiplier will be 

defined from equality to zero of determinant of non-linear equation system. Thus, we 

have N  unknown multipliers, which will be defined from determinant equality to 

zero. I.e. set of 1+N  coordinates of the system equilibrium position exists.  

Differential equation system (1.2) for non-multiple equilibrium positions can be 

expressed by means of klk

N

k
l xgc ∑

=
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1

 substitution. At that, the system (1.2) 

equilibrium positions SsNlb s
l ,...,1;,...,1, ==  will be transformed into equilibrium 

positions SsNla s
l ,...,1;,...,1, ==  and eigen values and eigen vectors of the linearized 

system (1.2) will be defined as. 
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Equation system (1.2) will be 
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Values s
la  satisfy condition SsNkaaF s

N
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Equation system (1.3a) can be written as 
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 is finite. 

Here we canceled out a multiplier α
ll ax − , as we consider only not coincident roots 

being coordinates of equilibrium position. So we showed that this multiplier does not 

equal to zero after infinite time.  

Thus, the differential equation can be written as 
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where ),( 0ttH l  - function which tends to infinity when coordinates tend to 

equilibrium  position. For real solutions, this function is monotonic. That is, we have 

obtained dependence of the solution on value ),( 0ttHl , which is monotonic time-

dependent function. 

Lemma 2. Necessary and sufficient criterion for unknown function to tend to steady 

equilibrium position coordinates is ∞→),( 0ttHl  when ∞→t . At the same time, 

equilibrium position coordinates have to have a real part.  

So, we have  
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at ∞→t  and hence NlttH l ,...,1,),( 0 =∞→  as integral of constant. Inverse theorem 

is also valid, on condition NlttH l ,...,1,),( 0 =∞→ , one of steady equilibrium 

positions is realized. This is a consequence of solution type; on condition 

NlttH l ,...,1,),( 0 =∞→ , according to Lemma 4,  negative real part of value s
lλ  exists 

in formula (1.6) and solution tends to equilibrium position coordinate s
la  in formula 

(1.4). If equilibrium position coordinates have real parts, values s
lλ  have real part. At 

that ∞→t .  

Lemma 3. Solution of differential equation (1.1) is function )(txl  which satisfies to 

equation (1.6).  

To obtain (1.6), let us divide equation (1.4) by product of multipliers s
ll ax −  and 

multiply (1.4) by ),( 0ttdH l . Then we will decompose obtained fraction into sum of 

simple fractions and perform integration. The following equation is obtained 
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Here for the case of sound energy emission in interval ],[ 0 tt  different branches of 

logarithm are obtained. 

After the expression exponentiated, we have (1.6) 
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where all values of equilibrium position coordinates are not multiple and are not 

dependent on radiation process occurring in an interval ],[ 0 tt . In case of laminar real 

solution, radiation will not appear, and in case of turbulent solution, followed by 

radiation, there will be energy transition. Really, presence of radiation yields the 

complex solution which describes turbulent pulsing mode. At that, at solution 

transformation, turbulent mode is followed by sound noise. Exponential multiplier 

does not affect equilibrium position coordinates which define stationary solution. 

Existence of multiplier )2exp( s
s
l ni ∆λπ  changes calculated main branch of solution for 

coordinate lx , but will not affect equilibrium position coordinate.  

Lemma 4. Sum of coefficients slλ  by index s  is equal to zero, i.e. 0
1

=∑
=

s
l

S

s

λ  

In case if following fraction decomposed.  

                  
))...()()...((

)(
)(

111
1

S
l

s
l

s
ll

S

ayayayay

yQ
yP

−−−−
= +−

− . 



 

 

 

9 

where )(1 yQS−  is 1−S -ordered polynomial. Equation 0
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This sum is equal to )()( 1 yQyP S−= . We write formula for polynomial equal to 

)(1 yQS− , dividing the equation by product ))...(( 1 S
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If suppose that 1+= S
lay , equality 0

1

1
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=

s
l

S

s

λ  is satisfied when 1+S  equilibrium 

position exists. 

But to realize the solution, it is necessary to know equilibrium positions of this non-

linear equations system. Besides, equilibrium positions can be multiple that changes 

the solution finding process, it becomes random or chaotic, but we are not going to 

consider this case. Nevertheless, it is possible to prove the following important 

theorem. 

Theorem 1. Cauchy task is considered under arbitrary real initial conditions for 

system of non-linear ordinary differential equations (1.1). If system (1.1) has 

complex conjugate equilibrium positions with real parts then, for finite real argument 

t , Cauchy problem solution for the system (1.1), for real initial conditions, tends to 
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infinity. Then this solution becomes a complex one, tending to equilibrium position 

in case when complex equilibrium position coordinates have real part. Here the right 

part of (1.1) is considered as being a regular function, real for real arguments. This 

function has finite number of non-multiple equilibrium positions.    

Proving 

If the system (1.2) is resolved at non-multiple equilibrium positions then, 

according to Lemma 3, we have 
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where s
l

s
l iba +  selected complex equilibrium position, slc  other equilibrium 

positions. Coefficients s
lλ  satisfy condition 0=∑ s

l
s

λ , according to Lemma 4. At 

that, in sum s
l

S
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 real part value s
relλ  in case of complex solution slλ  presents twice 

as all values s
lλ  satisfy condition  0=∑ s

l
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λ , so we have formula 02 =+∑ k
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k
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rel λλ .   

Let us substantiate solution (1.7). For that we will modify two complex 

conjugate terms of the solution (for expression simplicity, index l  is omitted) 
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where s
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s iλλλ += . After integration (1.8) over argument x , we obtain formula 

(1.7) 
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At that, value of )2( s
l

s
rel

k
l

k
l

k

ac λλ +∑  is real due to existence of complex conjugate 

equilibrium positions. Thus, for ∞→|| lx  and finite t , we have equation  

                                                   )(tan)( tDbatx l
s
l

s
ll += . (1.9) 

Solution of this equation tends to infinity.  

         At that, solution of differential equation for rising ),( 0ttH l , according to Lemma 

2, can have complex roots 
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At that, as equation 0=∑ k
l

k

λ  is satisfied according Lemma 4 and equilibrium 

positions have real parts, values with negative real part k
lλ  exist, so convergence to 

one of the equilibrium positions takes place. Real solution will tend to infinity at that 

existence, and uniqueness condition for Cauchy problem will be breached. According 

to Lemma 2, at ),( 0ttHl  infinity, unknown function will tend to one of equilibrium 

positions. This position of equilibrium can not be real as the real solution is infinite. 
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This means that the solution will have a branching point and will tend to complex 

equilibrium position. That is, for equilibrium complex positions, finite complex 

solution is obtained at ),( 0ttH l  change. Thus, in some point a complex solution will 

begin. 

. 

       End of the proof. 

Now we will give an example describing this property of the differential equation, 

transition to the complex solution. So, for the differential equation, there can be a 

complex solution instead of infinite real one 

                                             21 x
dt

dx += .  

And these equilibrium positions are purely imaginary, that is, the solution cannot tend 

to equilibrium position. And the real solution of this differential equation tends 

rapidly to infinity )]arctan(tan[ 00 xttx +−= .                                             

        Using an implicit solution finding scheme, we obtain the following equation 

                                          22
0 )(0)1( ttxxx ∆+∆++= . 

Seeking solution in respect to unknown function x , we obtain the following implicit 

scheme 
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])(0[411 2
0 . 

This implicit scheme with constant step correctly describes solution tendency to 

infinity. At reduced calculation step, this scheme yields larger value of variable t , 

that is, it yields larger value of unknown function. That is, it correctly describes 

behavior of the differential equation solution up to infinity. When infinity is reached, 
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under condition 2
0 )(0)4/(1 tttx ∆−∆−∆> , the finite complex solution will be found. 

Numerical computation of this equation has validated this analysis of the solution 

obtained.  

       At that, the complex solution possesses new properties; it performs complex 

rotation around equilibrium position. At the same time the real solution tends to 

infinity, i.e. right part of the differential equation tends to infinity and existence and 

uniqueness condition for Cauchy problem are breached, so additional complex 

solution is arisen. 

           The solution for complex initial data is given by formula 

)]arctan(tan[ 00 δixttx ++−=  for any t . Thus, approximately we have 
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If we choose branch with positive β , we obtain converging series. At that, this 

fraction denominator never becomes zero. 

That is, for real plane, finite solution does not exist. In complex plane, finite 

continuous solution exists in the case if equilibrium positions are not multiple.  

         But there is a question – what is the physical meaning of imaginary part of the 

solution?  

 

2. Physical Meaning of Exact Complex Solution 

So, for turbulent solution corresponding to complex equilibrium position coordinates, 

we have solution 
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The solution consists of step term in the form of delta-function and smooth part 
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As, at averaging over period, tangents sum without taking into account step term is 

equal to zero, we will study the step term of the solution. At that, this solution has 

singularity when condition )2/1()( += ktD π  is satisfied. Step term of the solution is 
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That is, imaginary medium pulse is originated. Imaginary velocity means flow 

rotation or oscillation; flow step is originated which will be destroyed in time 

π=∆ )(tD  to originate repeatedly. Number of such steps is finite. But how to average 

this steps? You should pass to probabilistic interpretation of the description. That is, 

to average imaginary part over the period )2/1()( +− khD k
l π . Then we have local 

complex average solution 
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Continuous part of the solution has positive and negative parts which are 

compensated when averaged. To obtain a global average value it is necessary to 

average with respect to value k , so we have NhDix k
ll

N

Nk

s
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s
ll 2/)(/1 &∑

−=
=−>< βα . We 

obtained complex velocity; imaginary part is defined up to multiplier. Real part of 

complex velocity corresponds to average value of velocity, and imaginary part is a 
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mean square deviation. Simultaneously, there is a vortex motion consisting of 

positive and negative value of root from slβ .  

       Contribution of imaginary part to average value is equal to 

                                               )(/1; k
llll

s
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s
ll hDix &=±>=< γγβα  

At that, module of average value, that defines real solution, is equal to 

)(/1;)(|| 22 k
llll

s
l

s
ll hDx &=+=>< γγβα , where equilibrium position coordinates and 

time are non-dimensional, then, as we calculate square root of imaginary part, we 

define branch 0>s
lβ . Thus, average single-valued solution is found.  

This multiplier lγ  depends on the surface roughness and it is found from numerical 

experiment. As numerical experiment has shown, for round smooth pipeline the 

multiplier is equal to 1=lγ . At that, the smooth pipeline has a constant, minimum, 

average module of roughness inclination tangent equal to 2300/1/1|tan| =>=< crRα , 

that is associated with molecular roughness, see section 1.1. For this, one term of 

series which determines flow velocity is used. We calculate this value for one term of 

the series for smooth surface. The solution is )tan()( l
s
l

s
ll htx βα += where  

                    1)(/1,1)();2/1()( >==<=+== k
lll

k
ll

k
l

k
ll hDhDkhhD && γπ . 

This value exactly corresponds to experimental formula for round cross section 

pipeline if the solution roughness is taken into account. At that, to take roughness into 

account for internal problem, klh  is multiplied by σ)
2

/1
(

lkRcr+
, here lk /  is a 

constant average tangent of flowing surface inclination. From this we obtain 

σγ )
/1

2
(

lkRcr
l +

= , see section 1.1. At constant average roughness height, the 

coefficient lγ  is not a constant as lk /  value is determined by other formula 

depending on dimensionless pressure, see section 1.1.  
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Appendix 

1. Laminar Solution of Navier-Stokes Equation 

Value of round pipeline resistance coefficient for arbitrary Reynolds number and 

roughness degree are known only from experiment. It is proposed, using complex 

solution, to obtain a solution of Navier-Stokes equations and based on the 

qualitative reasons to define roughness influence on the solution of Navier-

Stokes equation. It was possible to draw classical Nikuradze curves for round 

pipeline resistance coefficient versus Reynolds number and roughness degree 

with an accuracy of 10%. 

 

Introduction 

        The problem of turbulent fluid motion description has not been solved yet. It 

creates difficulties when oil, gas pipelines design calculation is performed. 

Besides, there are no theoretical methods for description of bodies motion in 

turbulent environment. These methods would be necessary for description of 

motion of aircrafts, submarines or above-water ships in the turbulent mode. 

Without simulation of bodies motion in wind tunnels or water basins, design of the 

bodies moving in the viscous environment is impossible.  

          There are approximate formulas for pipeline resistance coefficient at some 

ranges of Reynolds numbers, see [1], [2]. But they are empirical approximate 

formulas and they are applicable only for particular Reynolds number ranges. 

Classical experimental Nikuradze curves of round pipeline resistance 

coefficient versus Reynolds number and roughness degree are well known. 

Approximation of convective term reducing Navier-Stokes problem to linear one 

with effective turbulent viscosity is applied. But such transformation distorts 

solution of Navier-Stokes equations and for matching to experiment the turbulent 

viscosity coefficient can have any value, up to negative. Galerkin method which 

brings hydrodynamic problem solution to system of non-linear ordinary differential 
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equations is applied. But in the case of turbulent mode, this non-linear equation 

system has complex equilibrium positions, i.e. the solution is complex. Indeed, 

hydrodynamics equation system, in turbulent mode, in real plane does not have any 

solutions, the equation solution tends for infinity, see [3] and main part of the 

paper. But complex solution is finite. About physical meaning of the complex 

solution and oscillatory behavior of its imaginary part see [4],[5] or Section 2 of 

this paper. Thus, it is necessary to solve hydrodynamic problems for turbulent 

mode in complex plane. At that, the turbulent solution is not single-valued, there 

are finite number of the solution branches.  

 

1.1. Calculation of Round Section Pipeline Resistance Coefficient for Incompressible 

Fluid 

 

This algorithm has been used for calculation of resistance coefficient for pipeline 

with round cross section. The algorithm is described in article [6] in English. We will 

seek the solution of problem for cross section round pipeline in form 

)](/1)[( 22
0 zartVVz −= , in cylindrical system of coordinates. As external factor acts 

only along longitudinal axis z
L

PP
PzP 21

2)(
−+= , where 12,PP  - pressure in initial 

and final part of the pipeline, L  - length of the pipeline, radial and angular velocities 

components are neglected. External action is equal to 
L

PP
hz

21 −= . According to 

formula (1.2.2), the pressure gradient is equal to 
L

PP

z

P 21 −=
∂
∂

. So we have the 

equation  

z
z

z
z Vv

L

PP

z

V
V

t

V ∆+−−=
∂

∂+
∂

∂ 21  

Substituting velocity value we obtain  



 

 

 

18 

                         
2
021

3

2
222

0
220 4

)/1(2)/1(
a

V
v

L

PP

dz

da

a

r
arVar

t

V −−−=−+−
∂

∂
ρ

  (1.1.1a) 

Multiplying this equation by radius and performing integration over radius, as we use 

cylindrical coordinate system, we have 

                                   
dz

ada
VvV

L

aPP
a

t

V

6
2

2

)(
6/ 2

00

2
2120 −=+−+

∂
∂

ρ
. 

To obtain finite number of solutions we will multiply equation (1.1.1a) by 

function narr )/1( 22−  and integrate over volume. Then we will obtain finite 

number of turbulent solutions both for smooth and rough surfaces. Stationary 

laminar solution satisfying condition 0/ =dzda  is single-valued as in the 

equation (1.1.1a) the laminar solution is identical for different values of 

narr )/1( 22− . At the same time, likewise Schrödinger equation, finite number 

of turbulent solutions is found, each has its own energy. At transition from one 

state to another, discrete energy is radiated. The own energy minimum value 

defines the solution choice.  

     After calculating a module of the right part and averaging module of 

deviation angle tangent, we obtain 

l

ak
V

dzdaa
VvV

L

aPP
a

t

V 2

6

|/|
2

2

)(
6/ 2

0
2

00

2
2120 =><=+−+

∂
∂

ρ
 (1.1.1b) 

It will be seen that when minus sign is chosen for value of average module of 

deviation angle tangent >< |/| dzda , roughness presence increases flow velocity 

as the full derivative 
a

dzda
V

t

V

dt

dV ><−
∂

∂= |/|2
0

00  increases and this is not 

correct, flow velocity has to decrease due to roughness presence.  

       When turbulent viscosity is taken into account, negative value of average 

velocity associated with process velocity correlation function 

α
α ρρ

x

u
Kuu l

l ∂
>′<∂>=′′<− , see [1], is used and this leads to plus sign for average 
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module of roughness inclination tangent. The movement equation taking into account 

disturbances is  

                       >∆<+
∂

><∂−=>′′<+>><<
∂
∂+

∂
><∂

l
l

ll
l u

x

p
uuuu

xt

u ρνρρρ
αα

α
)(  

That is, convection term should be taken with minus, at right part of (1.1.1b) should 

be taken with plus.   

Besides, it is necessary to choose plus for average module of roughness inclination 

tangent to obtain complex turbulent solution. Otherwise, solution describing pulse 

turbulent mode will not be steady.  

Changing pipeline radius to diameter and dividing by value )/(2 dlkv , we obtain  

>=<=>=<=⋅=

−=+−=

|tan|/12/|/|/1,/),/(24

)(
;

8
2

00
2

2

3
12

0
2
0

0

ϕτ
ρτ

lkdzdaRvdVRdRvt

Lv

RdPP
T

T
RRR

d

dR

crcr

cr
cr

. (1.1.2) 

       If you use another branch of root mean square unsteady solution and following 

equation will be obtained  

                                                
8

2 0
2
0

0 T
RRR

d

dR
cr +−−=

τ
.               (1.1.3) 

Thus, steady solution for large difference in pressure is  

                                                             8/2
0 TRRR crcr ++−= . 

            Laminar solutions of these two equations at small pressure difference are the 

same. For turbulent mode with big pressure the solution has linear dependence of 

Reynolds number versus pressure square root. At small pressure increase, Reynolds 

number also grows and, as it follows from (1.1.3), pressure is increased. So the 

solution is not steady. In case of the complex solution it is equal to 

                                             2
0 8/ crcr RTiRR −−= . 

At that, when pressure increases, imaginary part of velocity increases too and this 

does not lead to increase of real pressure, the real pressure keeps the value 

unchanged.  
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If micro roughness >< |tan| ϕ  is distributed all over the pipeline surface, it is also 

present on macro roughness and defines critical Reynolds number and resistance 

coefficient at Reynolds number 2300. Micro roughness has the molecular nature, it is 

defined by average atom size equal to average geometrical difference between the 

nuclear size Ar  and size of Bohr orbit 0arA=σ  when the distance between atoms 

Aa 043.3=  is equal to some value determined by properties of pipeline boundary, 

iron, titanium and carbon. Distance between iron atoms is AaFe 87.2= , between 

titanium atoms - AaTi 46.3= , between carbon atoms - AaC 567.3= , see [7]. At the 

same time, the absolute value of tangent of micro roughness height inclination for 

metal surface of the pipeline is determined by formula 

)22/(]2/)(exp[|tan|)( 22 πσϕ Nnazzh
N

Nn

−−>==< ∑
−=

. The average tangent of 

inclination is equal to 

              

1150

1

105.0

104.1

043.32

1

043.32

1

222

]2/)(exp[

2
)(

1

8

13

0

22

=
⋅
⋅

⋅
=

⋅
=

==
−−

==

−

−

∞

∞−
∞

∞−

∫
∫

a

r

aa

dznaz

Na

dz
zh

R

A

cr

σ
π

σ

. 

In this paper, critical Reynolds number was calculated with respect to radius. 

Critical Reynolds number with respect to diameter is equal to 2300=crR . But 

why critical Reynolds number for the sphere is equal to 5103 ⋅ ? This is due to 

different definition of critical Reynolds number. This value is equal to 

effeff

eff

cr l

a

l

a

ds

dl

ds

da

R
⋅=⋅==

2300

11
, where effl  - effective hydrodynamic size of 

the body, including medium, a  - true geometrical body size, and 

2300

1
|tan| == ϕ

ds

dleff  - molecular tangent of roughness inclination. And the ratio 
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effl

a
 can be equal to 01.0=

effl

a
. 

Critical Reynolds number is equal to 2300=crR . Macro-roughness elements 

>< |/| dzda  are rarer and this causes increase of resistance coefficient at 

Reynolds numbers which is 12 or more times more.   

So we obtained a stationary criterion for Navier-Stokes equations taking into 

account one term of the solution series for one-dimensional case: 

                                  08/2 0
2
0 =+− TRRR cr  

For one-dimensional case, on condition of pipeline cross section area constancy, 

the continuity equation is the same. Laminar solution of this equation is  

                TTRTRTRRR crcrcrcr ]8/1//[8/ 22
0 −−=−−= .        

         For external pressure equal to 28 crRT = , a complex solution and turbulent 

mode take place as Reynolds number from this point is equal to critical value. 

From experiment and calculation we have critical Reynolds number for round 

pipeline 2300
|tan|

1 =
><

==
ϕk

l
Rcr . The pipeline resistance coefficient for 

round cross section pipe is determined by formula (we substituted to the formula 

the pressure difference expressed through dimensionless pressure) 

,
||

222
222

2

2
acraa

L

RR

T

ldV

kTv

LV

dP ==∆=
ρ

λ  

The average velocity used for Reynolds number is equal to       

                    
2

,2//)1( 0
0

0
2

2

0
0

RdV
RVrdrdr

a

r
rVV a

a

aa

a ===−= ∫∫ ν
.  

The pipeline resistance coefficient lamλ  asymptotic for laminar mode in round 

cross section pipeline is calculated truly. 

||

64

||

2
,1

8
,

32
2/)8/(2/

22
2

0
aacr

lam
crcr

crcra RRR

T

R

T

R

T
TRRRR ==<<≅−−== λ  
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Asymptotic behavior of the pipeline resistance coefficient  is obtained for small 

Reynolds numbers when the convective term is small. 

        In case of large pressure difference, we have a complex turbulent solution 

TTRiTRRTiRR crcrcrcr )/8/1/(8/ 22
0 −−=−−= . Computing more precisely, 

contribution of rotary imaginary part to forward velocity of flow movement 

corresponds to square root of imaginary part according to formula (1.1.4)  

                     

8/32/325.0

,]}1),(/),(/[{

)exp(
8

1

8

1

00

22
4

2
0

=⋅=
+=

−+=−−=

σ
ξξαβ

ψββ

σTlRTk

i
T

R

T

R

T

R
i

T

R

T

R

cr

crcrcrcr

      (1.1.4) 

and it is necessary to use value of ratio of Reynolds number to square root of 

dimensionless pressure as value of order 1 in the turbulent mode. At infinite pressure, 

Reynolds number for the flow is proportional 2/3~~ effdTR . At that, the smoothest 

surface is the surface with average module of inclination tangent equal to inverse 

value of critical Reynolds number. For solution in the form of series, another value of 

α  will be calculated. This value is defined from identical values of resistance 

coefficients at large Reynolds numbers and molecular roughness. The smoothest 

surface corresponds to average module of tangent of inclination equal to the inverse 

value of critical Reynolds number as the smallest modules of tangent of inclination 

correspond to molecular type of roughness. At that, effective diameter is less than 

true diameter. The average module of tangent of inclination angle can not be less than 

molecular roughness and its minimum value is equal to crR/1|tan| >=< ϕ . That is, 1 is 

the maximum value of ratio of effective diameter to true diameter because 2=α . For 

external problem, effective diameter will increase, and the coefficient will be 

determined by formula σξξβ }2/]1),(/),({[ 00 += TlRTk cr . 

       Coefficient β  is proportional to 

 
8

3

2

3

4

1
,]}1),(/),(/[2{/~ 00

2/32/3 ==+=>=< σξξβ σTlRTkddT creff . 
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At zero macro roughness, effective diameter is equal to 1, that is, when 

roughness is increased, effective diameter decreases. Value 

4/1)]1//(2[/ += lkRdd creff  was obtained from numerical experiment that 

corresponds to fourth root of mean square deviation. At zero macro roughness, 

micro roughness presents. And ratio of tangent of macro inclination roughness to 

micro roughness is more than 1)|tan|/( =>< αlk .  

At 30/ =kl , we have value of effective pipeline diameter  

38.0)]130/2300/(2[/ 4/1 =+=ddeff .  

          At the same time, diameter is changed only for coefficient of pulsing part 

of the solution, i.e. for imaginary part from where the multiplier 

σξξβ ]}1),(/),(/[2{ 00 += TlRTk cr  originates as the imaginary term is 

proportional to 2/3~ effdT  which is averaged. At that, value 4 2 /8/1 TRcr−  

corresponds to fourth root of mean square deviation. 

Here, influence of walls roughness in turbulent flow on imaginary part of 

Reynolds number of the flow is taken into account. To obtain curves with 

constant roughness height, it is necessary to enter effective average module of 

tangent of roughness inclination angle. The effective average module of tangent 

of roughness inclination angle has to depend on external pressure 
),(

),(

0

0

ξ
ξ

Tl

Tk
.  

           And in points of infinite Reynolds numbers or dimensionless pressure, we 

have the roughness corresponding to constant roughness height 

000

0 1

),(

),(

ξξ
ξ ==

∞
∞

r

k

l

k
, where k  - mean square root of the roughness height, 0r  - 

radius of round cross section of the pipeline.  

         The formula is chosen in such a way that it defines correctly dependence 

of Reynolds number versus external pressure and pipeline resistance coefficient 

at infinite Reynolds numbers and external pressure 
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TlRkiR cr
σξξ ]}1),(/),(/[2{8/1Im 00

4
0 +∞∞−=  at resistance coefficient equal 

to σωξ
λ

2
0 )]1//(2[

216

+
=

crcr RR
.  

              When average module of tangent of roughness inclination angle 
l

k
 is 

constant but roughness height k  is varying we obtain a curve which differs from 

Nikuradze curve. 

                                   

Fig.1 Curve of round pipeline resistance coefficient versus Reynolds number for 

different mean square root tangent of roughness inclination angle  

 

But Nikuradze formula is obtained for constant ratio of pipeline radius 0r  to average 

roughness height k . The formula (1.1.4) contains effective average module of 

tangent of roughness inclination angle expressed through ratio of pipeline radius to 

average roughness height using dimensionless pressure 

,/)}},(/)]([exp{4.01{

|)]})(|/||exp(1[|])(|/||{exp[
),(

),(

0000

000
0

0

krTT

TTTT
T

Tl

cr

crcr

=−−+×

×−−−+−−=

ξξγξβ

ξαξξα
ξδ
ξ

. 

Value 28 crcr RT = . Influence of effective average module of tangent of roughness 

inclination on flow property depends on Reynolds number or pressure difference. 
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Empirical formula for finding of coefficients )(),(),( 000 ξγξβξα  is following 

            
5.1

)( 0
0

ξξα crR= ,                
4

)( 0
0

ξξβ = ,               4/)( 5.1
00 ξξγ crR=  

At the same time, at the beginning of formation of the complex solution imaginary 

part 28 crcr RTT == , or at the beginning of turbulent solution, roughness inclination 

tangent is equal to approximately 1, and curves for different roughness inclination 

tangents coincide.  

At that, flow resistance coefficient for round pipeline is determined by formula 

2||

2

acr RR

T=λ , Reynolds number calculated based on the average velocity of flow 

movement is equal to 2/0RRa = . Resistance coefficient at infinite pressure is 

proportional to σξ
λ

2
0 )]1//(2[

216

+
=

crcr RR
. Here we demonstrate curves for solution 

obtained using one term of the series. 

       

Fig.2 Calculated and measured dependence of round pipeline resistance coefficient 

versus Reynolds number for different roughness 

 

To compare theoretical and experimental curves of resistance coefficient dependence 

versus flow Reynolds number, experimental curve by Nikuradze is given in Fig. 2, on 

the right. Error of the theoretical curve relative to experimental one is about 10%. But 

for laminar mode two solutions (1.1.2) and (1.1.3) are possible. Averaged solution 

Nikuradze (sand 
roughness) 

Galavitch (technical 
roughness) 
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will yield zero convection term and dependence aR/64=λ  that is not taken into 

account at the computation. In the theoretical curve convective term is taken into 

account which became equal to zero after averaging in laminar mode.  

          This curve was calculated for constant flow temperature over the flow cross 

section therefore in case of weak dependence of kinematic viscosity on temperature 

the formula will not change. For turbulent mode, it is necessary to substitute into the 

formula normalized pressure and ratio of pipeline radius to roughness height  

0

0
000

000
0

0

00

222
0

)},(/)]([exp{4.01{

)]}(/||exp(1[)](/||{exp[
),(

),(
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TlRTk
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cr
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+=

−+=

 

And the formula is constructed so that 0
0

0

),(

),( ξ
ξ
ξ =

∞
∞

k

l
. In case of the laminar mode 

there is a simple formula for Reynolds number:  8/2
0 TRRR crcr −−= . 

 

1.2. Algorithm for Solution of Internal Hydrodynamic Problem for Arbitrary Flow 

Geometry 

Navier-Stokes equations in Cartesian coordinates is 

                                   iik
i

k
k

i V
x

P

x

V
V

t

V ∆+
∂
∂−=

∂
∂+

∂
∂

∑
=

ν
ρ

3

1

. (1.2.1) 

We will solve a three-dimensional laminar stationary problem without convective 

term for defined external action lg   

                                               i
i

Vv
x

P ∆=
∂
∂

ρ
. 

Let us transform this equations to dimensionless form by dividing it by 32 / dv , as a 

result we obtain dimensionless equation 
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Following function is a solution of this problem 

                                   321321 ||4

1
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z

p
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sV
s ∂

∂
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−= ∫ zyπ
. 

We will seek solution of continuity equation for external action, where ir  - response 

to external action 

                                   0)(
||4

3212
=−

∂
∂

−
−=

∂
−∂

∫ dzdzdzh
z

pzy

x

rR
s

s

ss

V
i

ii

zyπ
    (1.2.2) 

From this we obtain equation for finding of flow pressure  

                                     32123212 ||4||4
dzdzdzh
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dzdzdz

z

pzy
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∂
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. 

We will seek the pressure value in the form ),,( 321
0

zzzap nn

N

n

ϕ∑
=

= . Then we will 

substitute pressure into expression under the integral sign, multiply by 

),,( 321 yyymϕ , and perform integration over the volume, then we obtain a system of 

linear equation 

                                                          nmnm aAb = . 

Expressions for coefficients are 
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where ),,( 321 yyyhl  is defined by external action. Let us transform Navier-Stokes 

equations to dimensionless form by dividing it by 32 / dv , and we have dimensionless 
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equation 
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Then we multiply Navier-Stokes equations by area of flow tube cross section, write 

the equations along laminar solution and enter flow tube with constant flow, see 

[8]. 2/ ddsss
S s

s
ℜ=Γ ∫ . In the convection term and in pressure gradient, we enter 

the derivative in the direction corresponding to the direction of flow lines in 

laminar solution. When substituting of the solution into equation  

                              )],(),,(),,([)( 321 βαβαβατα yyyRsss
=Γ  (1.2.3) 

where sS  - flow tube cross section in laminar mode, expression 

)],(),,(),,([ 321 βαβαβα yyyRs  is a stationary solution of Navier-Stokes equations 

without convection term which is equal to zero for flow tube as it does not depend 

on longitudinal coordinate.  

        We built these flow tubes for any external action which affects pressure 

difference. Further we consider roughness and under certain conditions obtain 

complex turbulent solution which is associated with influence of quadratic 

convection term with small multiplier, taking into account roughness, which yields 

complex solution at large pressure difference. At the same time, we reject real 

solution which was obtained for another sign of the module of average deviation, 

as it does not define fluctuating, turbulent solution. And imaginary part of the 

solution defines the solution pulsations.  

       If another sign of square root is chosen and correlation function of the process 

>′′< kl uu , where ku′  is a velocity deviation from its average value, is taken into 

account, turbulent viscosity becomes negative.  

Let us substitute the solution (1.2.3) into Navier-Stokes equation, integrate it over 
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flow pipe and divide by pipeline cross-sectional area. Then the convective term 

will be equal to 

βαβαβαβατα ddyyyR
ds

da

y s
S

s
k

l
k

k
s

)],(),,(),,([)( 321
22

3

1
∫∑ −=

∂
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=
 

Taking roughness into account  results in dependence of the pipeline radius )(0 sa  on 

macro-roughness. Further we will extract the term dsda /0  associated with roughness 

and will find average value of its module. At the same time we will make averaging 

of the equation with respect to s . It can be found out that convection term in laminar 

mode for smooth surface is equal to zero, and roughness has to be taken into account 

for non-zero value. So, we have the equation  

       βαα
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βααβα
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2 . 

              To take into account roughness of pipeline surface and obtain turbulent 

solution, it is necessary to consider the average module of tangent of roughness 

inclination angle. Then this convective term will have a small multiplier, and the 

convection term will be non-zero. This term is proportional to average value of 

tangent of module inclination at roughness >><−< || 00

ds

da

ds

da
. At the same time, 

there is a term depending on variable pipeline cross section area 
ds

ad >< 0 . And 

flow lines of complex turbulent solution corresponding to flow lines of laminar 

solution will remain the same but there will be a solution pulsing around laminar 

flow lines. At that, the pulsations are defined by imaginary part of velocity, and the 

imaginary part of the solution, equal to a constant, means pulsations with 

amplitude equal to imaginary part of velocity. 

Now, we will substitute the solution (1.2.3) into Navier-Stokes equations and will 

integrate along flow tubes, will multiply by crR  in domain where this value meets 
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a condition >=< |tan|/1 αcrR  and where >< |tan| α - average module of inclination 

tangent for not removable micro roughness with envelope forming macro-

roughness, and we will obtain the following equation 
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where ),,(),,,( 321321 yyypyyyRs  are determined from laminar solution and 

continuity equation, and function of external action ),,( 321 yyyhl  is defined. So it 

was found out that micro roughness located along all length of the pipeline defines 

critical Reynolds number. This micro roughness is less than macro-roughness 

which affects resistance coefficient at large Reynolds numbers. But as Reynolds 

number depends on pipeline geometry through its diameter, then critical Reynolds 

number is inversely proportional to the average module of tangent of micro 

roughness inclination and depends on pipeline geometry. At the same time, 

reduction of pipeline radius results in negative dsda /0  value and, therefore, 

absence of complex turbulent solution in the narrow place, i.e. the critical 

Reynolds number raises. On the contrary, the pipeline widening causes increase of 

dsda /0  and, therefore, reduction of critical Reynolds number and can result in 

earlier occurrence of complex solution, i.e. the turbulent mode.  

          And, as Reynolds number depends on temperature through dependence of 

kinematic viscosity on temperature, it is obvious that occurrence of critical 

Reynolds number depends on environment temperature.  

     Coordinates of equilibrium position are defined from a quadratic equation 
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At the same time, the laminar solution ss
s
cr

s
crs TRR γα −−= 2)(  becomes more 

exact and at small pressure difference transfers into linear laminar solution 

)2/( s
crsss RT γα = .  

             In this case, turbulent formula for roughness calculation is applicable 

due to identical averaging method in turbulent mode 
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          where ),(/),( 00 ξξ ss TlTk  - effective average tangent of roughness 

inclination, 0ξ  - ratio of roughness height to pipeline radius and critical Reynolds 

number s
crs R=α  is value of Reynolds number corresponding to the beginning of 

the complex solution. At the same time, for small Reynolds number we obtain a 

laminar solution. But difficulties in obtaining of turbulent solution do not come to 

an end. It is necessary to define effect of the surface roughness and for this use of 

experimental data is still inevitable. In principle, exact dependence of Reynolds 

number for smooth surface on macro-roughness is necessary to be learned. But 

external problem has some features associated with existence of resistance crisis 

which is caused by presence of a trace behind the body placed into the flow. This 

trace does not present in internal problems such as flow in pipeline. 

 

1.3.1. Specificity of Flow Velocity Calculation for Sphere 

Let us find out solution of Navier-Stokes equations for external problem. We have 

laminar solution for sphere motion in fluid for small Reynolds number. It yields the 

following velocity distribution, see [8]: 
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At that, pressure dependence on flow parameters is 
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Motion equations in spherical coordinate system for solutions which do not depend 

on angle ϕ  can be written as 
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Let us change coordinate system to θτξ ,,  with unknown PRRr ,, θ , the coordinate 

system is defined by formula dRVdtdr /,2/,2/ 2 νντξ === , 22 / dPp ρν= , after 

division of the equation system by 32 /2 dν  we will have equation system 
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At that, in dimensionless constants, solution can be expressed as  
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But if you consider solution for one domain ],0[ πθ ∈ , zero value will be obtained for 

coefficient xR . So, the domain should be divided into two parts ],[],,0[ 00 πθθθθ ∈∈  

and value 0θ  should be found out of equality of xR  coefficients computed for 

different domains. At that xR  - common for either of Reynolds number components 

as laminar solution. 
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Here we will show how to find solution for the first equation, solution of the second 

equation can be found similarly. For this, for internal problem, we will multiply 

equation by θθdrdr sin2 . For external problem, we will enter variable 
ξ
1=r  for 

]0,1[∈ξ  and the multiplier will be following θ
ξξ

θ
dd

1sin
2

. Let us write down the 

equation with all multiplies: 
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Integration over the angle ],0[ π  yields zero right part of the equation. So, it is 

necessary to divide this solution into two domains and match solutions at the 

boundary. At low velocity, this solution will be real but it is possible that the angle is 

complex.         

Let us integrate this equation over two domains ]1,0[
1

],,0[ 0 ∈∈
ξ

θθ  and 

]1,0[
1

],,[ 0 ∈∈
ξ

πθθ , then 
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Equation for another domain is 
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For laminar mode and very small Reynolds number crRR <<0 , we have following 

expression for Reynolds number  
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Solution obtained is symmetrical: 2/0 πθ = , 8214.0=xR . If non-linearity is taken 

into account: 
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Where parameter β/10 =
crR

R
 is defined for area of Reynolds number increase. 

Another solution is: 
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And complex Reynolds number xR  corresponds to beginning of turbulent mode. 

  If you take into account all coefficients, solution 2/0 πθ =  will not be obtained but 

you will have two values for coefficient 0θ . It will be found that two angles 21,θθ  

exist for each Navier-Stokes equation which correspond to two different variants of 

domain division. In case 00 →R  angles 2/πθ =l  are equal, we have 2/1)( =llR θ . 

Coefficients )()(),()( 44332211 θθθθ RRRR ==  will be found from two Navier-Stokes 

equations which will be integrated separately over domains ],[],,0[ 00 πθθ . At that, the 
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two first of the angles will be found from the first Navier-Stokes equation, and the 

third and the fourth – from the second one.   

      Final solution will be found in the form 
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We substitute the decision in two equations of Navier – Stokes and in the continuity 

equation, we average on space and we find the stationary solution. 

     And Cartesian components of velocity are equal to 
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For the following examples initial data were taken which do not match the solution. 

Fig.1 shows a plot for real angles versus two angles and on condition 

5.1,1)(;1.02/;1.02/ 04231 ==+==−== RR ll θπθθπθθ . And for all plots 

1=ℜ=ℜ θr  
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                       Fig.1                                                        Fig.2 

    

                           Fig.3                                                       Fig.4 

Next Fig. 2 shows results for Reynolds number 1500 =R , angles 

1)(;4.02/;4.02/ 4231 =+==−== llR θπθθπθθ . The more is Reynolds number, the 

more is deviation of angles lθ  from 2/π . Fig.3 shows flow with Reynolds number 

50000 =R  and complex angles 

1)(;5.05.02/;5.05.02/ 4231 =++==+−== llRii θπθθπθθ . Two singular 

domains are seen in front of the sphere and behind the sphere. In these areas, velocity 
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corresponds to tangent line. Plot in Fig.4 was calculated for the same parameters as 

plot in Fig.3 but Reynolds number of the body is equal to 500000 =R . The flow 

parameters are maximal, pattern remains the same as for parameter 50000 =R .                                         

                                      

                                                                      Рис.5 

Fig. 5 was plotted for parameters 

 500;1.0)(;5.02/;5.02/ 04231 ==+==−== RR ll θπθθπθθ . Velocity distribution 

is so that there is a singular domain in front of the sphere – incompressible fluid can 

not penetrate into this area. And this area, inaccessible for fluid flow, has large length 

that provides conditions for origin of long vortex path. 

          To change pattern, it is necessary to change angular boundaries and relation 

between coefficients )( llR θ . Besides, at large Reynolds number, imaginary part 

increases and, hence roughness effect is rather large. 

                 For incompressible liquid the equation of continuity along a current tube 

with longitudinal coordinate s  has an equation 0=
∂
∂+

∂
∂

n

V

s

V ns . As the normal 

derivative from a normal component of speed is equal to zero for border of a special 

zone, we have constant longitudinal speed on border of a special zone. The 

convective term on border of a special zone is equal to zero.  At that critical Reynolds 
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number for external region off the body is equal to 
crcr l

a

R 2300

11 = , where a  - 

specific body size, crl  - length of the smooth body envelope when condition of 

complex coefficients )( llR θ  beginning is satisfied. Ratio 
crl

a
 is found from non-linear 

equation for crl  finding, which corresponds to beginning of complex solution.      

    For the plots computing, following equation system was resolved in dimensionless 

coordinate system  

                                               ]4,4[;2,; 00 −∈−=== yxR
dt

dy
R

dt

dx
YX . 

For this, we write down new formula which is necessary to substitute to Navier-

Stokes and in the continuity equation, to average the solution and to define new 

multiplies Ρℜℜ ,, θr  by which the solution will be multiplied 
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              Let us draw the curves for real boundaries of the area definition.        
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                         Fig.6                                               Fig.7 

                                     

                        Fig.8                                                  Fig.9 

Vertical axis characterizes module of difference between coefficients calculated for 

two different areas. On horizontal axis the real angle 0θ  is shown. In Fig. 6, the only 

root for small Reynolds number is shown. In fig. 7, there are two real roots 

corresponding to the laminar mode with Reynolds number equal to 1000 =R . 

In figures 8, 9 complex roots existence is shown, the roots are equal to 

ii 5.02;5.01 21 +=+= θθ . The imaginary axis values change in interval ]2,0[ , real 

axis values – in interval ],0[ π .   

1.3.2. Description of Singular Domain 

              At that, solution for fluid flow has discontinuous zones, velocity 

perpendicular to boundaries of these zones is zero. Therefore fluid in these zones is 

independent of main flow. But tangential velocity components on boundary have to 

Difference of coefficients for two solutions in different 

areas 

Difference of coefficients for two solutions in different 

areas 
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coincide. Now we will find the solution in these zones. Real part of the solution 

21 iRRR +=  corresponds to component z , the imaginary part - to component x , and 

the x  axis rotates around the axis z0  with change of angle ϕ . But the solution is to 

be found for fixed angle and should not be dependent of this angle. Then the solution 

of Navier-Stokes equation will be  

                          )lnexp( 0
,

ρiminbR nm

N

Nmn

+Φ= ∑
−=

. (1.3.2.1) 

           Where new scaled angular variable )/()(2 minmaxmin θθθθπ −−=Φ  is entered, 

where minmax,θθ  - extreme values of turbulent zone boundaries. Besides, we will 

enter the scaled radius 
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where )(),( minmax θθ aa - maximum and minimum value of radius of the turbulent 

zone boundary. In case if denominator is zero, value )()( minmax θθ aar =  should be 

used for r. Then ρln  will be continuous and equal to π  in this point. Coefficients 

nmb  will be defined from values of the laminar solution within turbulent zone 

boundaries )(),( maxmin θθ asar == , where ],[ maxmin θθθ ∈ . 

Coefficients nmb  will be determined by formula 
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As boundary values at the beginning and the end of the period differ and area 

boundaries expressed in coordinates θ,r  are not rectangular (in coordinates ρln,Φ  

velocity on the boundary is variable), a series will be discontinuous, that is, the 

coefficient nmb  decreases as )/(1~ nmbnm  when ∞→mn, , i.e. this solution is 
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discrete. In singular domain, in coordinates Φ,ln ρ , the solution is discrete due to 

discretization of functions ),(ln 0 ΦρR  in the form of discrete series. But as the 

description of singular domain is performed relative to coordinates Φ,ln 0ρ , the 

singular domain is discrete. Vortex path or pulsing turbulent mode with variable 

boundary is formed in this area at laminar mode.  

    The formula (1.3.2.1) can be rewritten in the form 
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where in this case we have 
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x
x  and then step with amplitude nmA   

and phase 1100 ln,,ln, mnmn ρρ ΦΦ  will be found from equations  
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where indexes NNmn ,...,1,1,...,, −−= .  

It should be noted that 0000 bA = . If the series in the left part of (1.3.2.2) is not 

summarized directly as this requires too large number of terms, then the right part of 

(1.3.2.2) will determine its discrete sum for finite number of terms. It should be noted 

that  

                  qqpp mmmnnn πρρπρππ 2lnln2ln,22 1010 +≤≤++Φ≤Φ≤+Φ  

is almost periodic coordinate of the step. 

                  Why the turbulent solution in singular domain has the pulsing character 

with variable boundaries? The turbulent area boundary is not smooth function due to 

discreteness of the turbulent solution, unlike the laminar solution. This results in non-

equality of tangential component of the solution and boundary pulsation in case of 

turbulent mode.  
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           For description of laminar flow, it is necessary to enter dependence of 

specified radius on time  

              
d

u
Sht 02

0 2,/)](4/)2([lnln πωππππωρρ =−ΦΦΦ−⋅−=  

where Sh  is a Strouchal number. At that, the pattern will fluctuate with Strouchal 

frequency according to value of 0ln ρ  and this will lead to vortexes rotation in 

opposite directions as the frequencies under condition 2/3,2/ ππ =Φ=Φ  have 

different signs. At the same time, on the area boundary, frequency is zero, i.e. the 

solution on boundary is continuous in laminar mode.              

 

1.3.3. Solution of the Flow Problem for Arbitrary Smooth Body in Spherical 

Coordinate System 

Laminar solution of the flow problem for arbitrary body in spherical coordinate 

system we regard resolved in the form of final formula. That is, value of Reynolds 

number and pressure for laminar mode is found: 
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We resolve each Navier-Stokes equation by multiplying by θ
ξξ

θ
dd

1sin
2

, integration 

over inverse radius and angle θ , over two areas, which have one of the boundaries 

2,1, =llθ . We defined this boundary from equation ]),([]),([ 21 ϕϕθϕϕθ rrrr RR = . As 

the equation for these angles finding is the second degree one, two angles, 21, kk θθ , 

are found. We define value )(0 ϕθ r  for laminar solution and consider this in formula 

for Reynolds number taking area boundaries into account.  
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          We do the same operation with other components of Reynolds numbers. 

Further we find out the solution by entering four unknown constants 
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.(1.3.3.1) 

We substitute these functions into Navier-Stokes equations and continuity equation, 

we integrate over the volume and then we obtain 4 constants Pr ,,, ϕθ ℜℜℜ . These 

coefficients can be complex describing the complex turbulent solution. Real part of 

the solution will be an average solution, and imaginary part - mean square deviation. 

At that, as the angle enters into solution function in non-linear way, it is possible to 

integrate on periodic angle ϕ  without obtaining of zero integral. When solving non-

linear equation, there can occur complex function 2,1),(),(),( =lllrl ϕθϕθϕθ ϕθ . 

Similarly, it is possible to find the problem solution for sphere, determining not 

laminar pressure, but such solution will be complicated. It is possible to add angle 

dependence of the sphere solution versus angle ϕ  in Cartesian coordinate system and 

to solve a problem defining )(),( 21 ϕθϕθ , then dependence of the solution on angle ϕ  

will be found. At the same time, it is necessary to keep dependence on spherical 

coordinate system at Cartesian components versus velocity and pressure. In 

curvilinear coordinate system, the derivative is determined by formula 
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Where 
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                    θθϕθϕθϕθϕθ cos),(;sinsin),,(;cossin),,( 321 rrxrrxrrx ===  

From this we define 
lx∂

∂
 through dependence 

ϕθ ∂
∂

∂
∂

∂
∂

,,
r

. The second derivatives 

with respect to lx  can be found similarly but in this case dependence on mixed 

derivatives with respect to ϕθ ,,r  will occur.  
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At that, as ϕtan≠
x

y

R

R
, velocity component ϕR  will occur. As 

zzlyylxxl 000 ,, θθθθθθ === , this dependence vanishes at small Reynolds number.  

 

2. Physical Meaning of Complex Solution. 

Let us explain physical meaning of the complex turbulent solution. So, we will 

consider real solution of ordinary differential equations system )(txα .  

        Let us assume that initial data have an average value 0
αx  and mean root square 

>∆< 20 ][ αx .  

Mean root square of initial data for Navier-Stokes equation is defined by surface 

roughness or by initial data which are not precisely defined. Then, for mean root 

square of the solution we have 

    222222 2][][ ><−>=<><+>><<−>>=<><−>=<∆< lllllllll xxxxxxxxx . 

Then 

                            22222 |][|][ >∆<+><>=∆<+>>=<< lllll xixxxx          (2.1) 

Here I will provide the formulation of inverse Pythagoras theorem. For any three of 
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positive numbers ba,  and c , such that 222 cba =+ , there is a rectangular triangle 

with legs a  and b  and hypotenuse c . Hence, mathematical mean value and mean 

square deviation form legs and hypotenuse is an average square root of the value. 

That is, average >< lx  is orthogonal to mean square deviation >∆< 2][ lx  which 

forms imaginary part of the body coordinate. Thus, the Cartesian space with 

oscillatory high frequency velocity (period of fluctuation is less than measurement 

time), obtained as a result of averaging in time, becomes complex space. That is, in 

case of large mean root square of the real space, it should be considered as complex 

three-dimensional space where imaginary part corresponds to mean square deviation. 

At the same time, there is following relation between variables 

1||,)][( 22 =>∆<+><=>< ααlll xixx , and the complex number α  is chosen in 

such a way that the imaginary part had positive or negative value. Mean square 

deviation satisfies this condition. But sometimes the mean square deviation is 

positive, for example, in case of dielectric permeability where positive and negative 

charges have an influence. In this case we have a formula 
ω

σπεε i4
0 +=  where real 

part is proportional to positive mean square dipole deviation and conductivity is 

proportional to average value. But conductivity is divided by frequency which has 

positive and negative sign.  

        Therefore, algorithm for finding of average solution or average solution in phase 

space and its mean root square is reduced to finding of complex solution. The average 

solution corresponds to real part of solution, and second power of complex part 

corresponds to mean root square of the solution. This is physical meaning of complex 

solution, real part is an average solution, and imaginary part is a mean square 

deviation. And real and imaginary parts are orthogonal and form complex space. 

Really, according to inverse Pythagoras theorem, due to formula (2.1) mathematical 

mean value and mean square deviation form legs and average square is a hypotenuse.  
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Here we would like to note that when calculating the flow motion and one term of a 

series is taken into account, it is necessary to take square root of imaginary part as 

forward velocity is calculated. The imaginary part corresponds to square root of 

oscillatory part of dimensionless velocity.  

       This situation is similar to calculation of deviation at random choice of forward 

or back step with probability ½ and the point position after N  steps is defined by 

N .  

        Real and imaginary parts of the solution are located on different axes of complex 

space. But if you average imaginary dimensionless part, you will have 

             4 22 )]([)()]([)( >∆<+>→<>∆<+>< txitxtxitx αααα  

And the solution is equal to the module of the last value and, for different roughness, 

the imaginary part of the solution should be multiplied by averaging multiplier. At 

the same time, if all coefficients of a series in non-linear equations system are 

calculated, it is not necessary to calculate square root of imaginary part. It is 

necessary to summarize complex values and to calculate module of the sum.  

             Now we will show that the imaginary part of complex derivative of 

coordinate in phase space of the differential equation forms pulsing coordinate 

motion in phase space, i.e. in space of variables >∆<+>< 2)]([)( txitx kk .  

Average values are used for variables as, at molecular level, the medium is not 

smooth.  

Lemma 5. Complex solution yields fluctuating pulsing function of flow motion 

coordinates. 

The imaginary part of velocity corresponds to rotation speed in phase space. As 

rotation radius is known, it is also possible to determine rotation frequency. In the 
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rotation plane, complex velocity with constant rotation radius and constant 

frequency can be written in the form )exp(0 tiViVV yx ω=+ .  

        In case of varying over the space stationary speed, locally, this formula can be 

written for one plane as ]),,(exp[),(),(),(
0

0 duuyxiyxVyxiVyxV
t

yx ω∫=+ , and 

frequency is dependent on time as the phase shift is provided as a result of 

harmonic oscillations in neighboring points. Sum of harmonic oscillations with 

different time-dependent frequencies defines pulsing mode in phase space at 

stationary complex velocity. That is, this complex velocity defines the coordinates 

of phase space points pulsing in time. The situation is similar to existence of 

several stationary vortexes defining the pulsing rotation of the flow. 

Lemma 6. Three-dimensional flow velocity can be written in the form  

                            )arg(),exp( nltllllnltll iVViViVVV +==+= ϕϕ . 

And velocity is defined in the form of integral of tangent acceleration by formula  
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Integral of perpendicular component of acceleration defines perpendicular component 

of velocity by formula  
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At that value of local velocity is )(Re)(),(Im)( 0000 ττττ ltllnl VVVV == . But value of 

velocity obtained as a result of integration of centripetal acceleration is not zero 

( 0)( ≠τnlV ), but this velocity become equal to zero for the same initial point, at 

constant particle velocity and constant curvature radius with rotation period 
||

2

V
R

T
π= , 

where R  - curvature radius. For variable particle velocity depending on time, when 

one of the integrals 0||
0

=∫ ldtV
τ

τ

, which, at finite curvature radius of one sign of the 

trajectory, is finite and equal to 
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tangential direction lt , changes sign in the course of rotation.  

Tangential acceleration is defined by formula  
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Direction of velocities nltl VV ∆∆ ,  is orthogonal, their sum yields increase of motion 

velocity module 2
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. Components of these projections, differentiable 

with respect to time, define tangential and orthogonal accelerations. At the same time, 
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concepts of tangential and orthogonal velocities are entered which, in the Cartesian 

space, are not orthogonal to 0)( ≠lt V,V , but in six-measured complex space they are 

orthogonal, and their module of complex vector nltll iVVV +=  is equal to  
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||])()[(|| nltl
l
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===

 

It can be proved by use of expression nlnl
l

ntltl
l

t VV eVeV ∑∑
==

==
3

1

3

1

,  and calculation of 

module as product of complex conjugate vectors taking into account orthogonality of 

six real unit vectors.  

Conclusions 

Thus, solution of Navier-Stokes equations for not multiple equilibrium positions is 

obtained. It is defined by expressions 
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where values s
la  are coordinates of equilibrium positions.  

Laminar solution corresponds to the solution of linear problem with convective 

term averaging; structure of turbulent solution is 

s
n

nnk
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n tgtg
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where )(tgnk  - known defined continuous function, value of nxtgtg kknnk π+= ),()( 0
0  

is defined from initial conditions, and ∞=
∞→

)(lim tg
t

. At that, the solution contains a 

lot of poles which, for real solution and real initial data, yield infinity.  
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At real time and complex initial conditions which define complex value of 

),( 0
0 knk xtg , and, as )(tg  is real, the complex solution is finite. 

         At that, formula  

                              NlttHax l
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0
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=
λ . (2.2) 

may have branching points in which the solution continuously passes into other 

branch of the solution. This does not contradict the theorem of solution uniqueness 

for Cauchy problem as the left part of the differential equation tends to infinity in 

branching point. Derivative of right part of ordinary differential equation also tends to 

infinity in branching point. So we have a point of discontinuous solution. But this 

solution can be continued by a formula (2.2).  

        This situation is similar to Schrödinger equation when generally we have finite 

number of solutions. It is not surprising as Schrödinger equation can be reduced to 

Navier-Stokes equation. Now we will prove it. For this we will write down 

Schrödinger equation and will transform it using equality 
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Dividing the equation by mass ψm  we obtain the equation 
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Now we will write a private derivative equation, will take a gradient of both parts of 

equation and will enter real velocity to the formula ψln∇−=
m

i
h

V . 
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Substituting velocity value into transformed Schrödinger equation, we have  
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Now we have three-dimensional Navier-Stokes equation with pressure corresponding 

to potential. Nevertheless, the hydrodynamic problem differs from the equation of 

Navier-Stokes derived from Schrödinger equation and continuity equation.  

          At the same time it is possible to draw an analogy between laminar single-

value mode and free, single-value description of bodies.  

        Between turbulent mode, having finite number of solutions, and description of 

bound particles having finite number of solutions. In case of turbulent complex and 

laminar real modes there is a boundary between them and critical Reynolds number. 

The similar boundary is available between free and bound particles description, 

which corresponds to energy transition from negative to positive state. In turn, 

Navier-Stokes equation has to have discrete energy levels of turbulent flow states, 

transitions between these states with energy emission or absorption have to be 

realized. 

The boundary between free particles description and bound particles description can 

be defined, this is transition to complex quantum number or to infinity of the main 

quantum number of hydrogen atom. At that, infinite quantum number of hydrogen 

atom, passing through zero value of expression 2/1 n  where n  - main quantum 

number, becomes imaginary and continuous. Wave function of free motion, which is 

continuous at continuous energy, corresponds to laminar solution of hydrodynamic 

problem for which single valued solution exists. And for large quantum number, the 
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system is quasi-classical, i.e. for quantum number which is close to boundary 

(quantum number is equal to infinity) system is almost classical. 

         And there is a boundary between free solution and solution which describes 

bound states. This is zero energy value and, likewise non-linear private derivatives 

equations, boundary exists between turbulent complex solution and laminar real 

solution. 
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