ТЕОРЕМА О ПРОСТРАНСТВЕННОМ ЗОЛОТОМ СЕЧЕНИИ

2 октября 2011 г.

Энциклопедический
Фонд Russika
Санкт-Петербург, Россия

Александр Нодарович Ахвледиани

Международное научно- техническое общество

«INCOL»

Кармиэль, Израиль

ТЕОРЕМА О ПРОСТРАНСТВЕННОМ ЗОЛОТОМ СЕЧЕНИИ

А.Н. Ахвледиани

Научно-техническое общество «INCOL» Israel – Georgia

Email - alexanderakhvlediany@yandex.ru

Аннотация

В настоящей работе сформулирована и доказана «Теорема о пространственном золотом сечении» для трехмерного эвклидового пространства и прямоугольной декартовой системы координат. Упомянутая теорема обосновывает существование «Пространственного золотого сечения» в трехмерном эвклидовом пространстве.

Из истории развития науки известно, что пропорции «Золотого сечения» с древних времен вызывали неослабеваемый интерес со стороны многочисленных исследователей. Одним из первых, кто в западной науке рассматривал соотношения «Золотого сечения» - был великий древнегреческий ученый Пифагор. Однако существует предположение, что пропорции «Золотого сечения» были известны еще в Древнем Египте. Так например установлено, что пропорции пирамиды Хеопса, древнеегипетских храмов, барельефов, а также многих предметов украшений, - содержат в себе пропорции «Золотого сечения». Сам термин «Золотое сечение» был введен знаменитым итальянским ученым Леонардо да Винчи, в процессе исследовании им сечений стереометрических тел, образованных правильными пятиугольниками.

В книге Юрия Семеновича Ямпольского - «Золотое сечение – основа структурных пропорций в природе материального мира» /1/ приведено много интересных сведений о содержании соотношений «Золотого сечения» в структурах материального мира. В частности приведены вычисления, свидетельствующие о том, что соотношения «Золотого сечения» отражены во многих структурных взаимодействиях частей окружающей нас природы.

В предлагаемой вниманию читателей настоящей работе, в соответствии с общим подходом /1/, рассматривается возможность распространения общих условий, определяющих «Золотое сечение», на трехмерное эвклидово пространство, снабженное декартовой прямоугольной системой координат. Рассмотрим общие условия, определяющие «Золотое сечение».

Условия образования «Золотого сечения»

«Золотое сечение» определяется следующими двумя условиями:

- 1. Сумма частей «Золотого сечения» составляет единое целое.
- 2. Целое, составленное из двух частей, так соотносится с одной из двух частей, как эта часть с другой частью целого.

Для дальнейшего изложения нам понадобится следующие определения из аналитической геометрии.

Определение уравнения поверхности

Уравнение, связывающее координаты x, y, z в прямоугольной трехмерной декартовой системе кординат, называется уравнением поверхности S, если соблюдены следующие условия:

- 1. Координаты x, y, z каждой точки поверхности S удовлетворяют этому уравнению.
- 2. Координаты любой точки, не лежащей на поверхности S, не удовлетворяют этому уравнению.

Определение уравнения поверхности второго порядка

Каждое уравнение второй степени:

$$A \cdot x^2 + B \cdot y^2 + C \cdot z^2 + D \cdot x \cdot y + E \cdot y \cdot z + F \cdot z \cdot x + G \cdot x + H \cdot y + K \cdot z + L = 0$$
 (1)

где A, B, C, D, E, F, G, H, K, L - действительные коэффициенты, не все одновременно равные нулю, называется уравнением поверхности второго порядка в трехмерном эвклидовом пространстве, если существует непустое множество комбинаций действительных значений переменных, удовлетворяющих рассматриваемоему уравнению.

В настоящей работе рассматривается вопрос возможности расширения соотношений «Золотого сечения» на случай алгебраических и геометрических соотношений, представляющих собой аналитический и геометрические образы «Золотого сечения» в трехмерном эвклидовом пространстве. Сформулируем и докажем следующую теорему.

Теорема о пространственном золотом сечении (А.Н.Ахвледиани – 2011 г.)

Геометрический пространственный образ системы аналитических соотношений «Золотого сечения», определенный в трехмерном эвклидовом пространстве с прямоугольной декартовой системой координат, представляет собой «Пространственное золотое сечение», образованное пересечением поверхности второго порядка с плоскостью.

Доказательство

Запишем соотношения «Золотого сечения» в алгебраическом виде, подразумевая, что входящие в них переменные определены на множестве действительных чисел, за исключением тех комбинаций значений, для которых соответствующие алгебраические операции не определены. Получим следующую систему уравнений:

$$\frac{z}{y} = \frac{y}{x} \tag{2}$$

$$z = x + y \tag{3}$$

Соотношение (2) в алгебраическом смысле определено для всех значений, входящих в него переменных, за исключением случаев x = 0 или y = 0. Нетрудно видеть, что при допустимых значениях переменных, соотношение (2) эквивалентно следующему соотношению:

$$y^2 - z \cdot x = 0 \tag{4}$$

где соотношение (4) в трехмерном эвклидовом пространстве и декартовой прямоугольной системе кординат удовлетворяет определению поверхности второго порядка (1). При

допустимых значениях координат, соотношения (2) и (4) эквивалентны следующему соотношению:

$$z = \frac{y^2}{x} \tag{5}$$

Поэтому для допустимых комбинаций значений координат, система (2)-(3) эквивалентна следующей системе:

$$z = \frac{y^2}{x}$$

$$z = x + y$$
(6)

Таким образом, из системы (6) следует, что она определяет в трехмерном эвклидовом пространстве, в прямоугольной декартовой системе координат, - «Пространственное золотое сечение», образованное пересечением поверхности второго порядка (4)-(5) с трехмерной плоскостью, определяемой соотношением (3). Теорема доказана.

Геометрический образ «Пространственного золотого сечения» построен нами с помощью графической программы математического пакета **MATCAD** и показан на **Puc.1**. На представленном трехмерном графическом изображении «Пространственного золотого сечения» видна также вертикальная сингулярная зона, представляющая собой зону неопределенности. Это означает, что в зонах близости к плоскостям, удовлетворяющих условиям x = 0 или y = 0, поверхности, образующие «Пространственное золотое сечение» пересекаются сингулярной зоной неопределенности, определяемой соотношением (2) при стремлении соответствующих переменных к нулю.

Иллюстрация, представленная на **Puc.1** свидетельствует о том, что в трехмерном эвклидовом пространстве, соотношения, выражаемые «Золотым сечением» имеют соответствующую трехмерную геометрическую интерпретацию. При этом алгебраическое соотношение, выражающее отношение пропорции, геометрически представляет собой поверхность второго порядка, в то время, как алгебраическое соотношение, выражающее условие объединения частей в единое целое, представляет собой трехмерную плоскость. «Пространственное золотое сечение» образуется именно в

результате пересечения этих двух поверхностей и представляет собой «Золотые линии» в трехмерном эвклидовом пространстве.

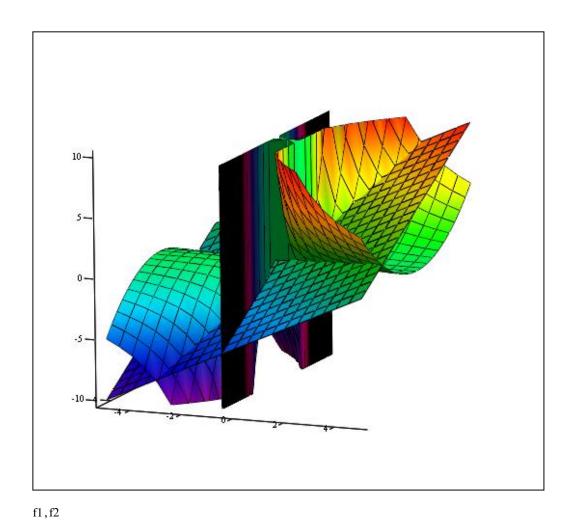


Рис.1 Трехмерный геометрический образ «Пространственного золотого сечения».

Используемые источники:

1. Ямпольский Ю.С. «Золотое сечение – основа структурных пропорций в природе материального мира». Санкт-Петербургский Государственный Политехнический Университет. 2010 г.