От редакции
     Редакционный совет программы "Энциклопедический фонд России" приглашает научную общественность России и зарубежья принять участие в публикации энциклопедических, научных и публицистических статей.
     Для получения возможности самостоятельной публикации, авторам необходимо отправить заявку произвольной формы с указанием минимальных сведений о своей квалификации на E-mail:
mre@lenta.ru
marunin@yandex.ru

     Сервисное приложение:
     
Книги
Бабанцев Н.Ф., Аруева Л.Н. Тернистый путь к вершинам спорта и науки
Н. Ф. Бабанцев делится воспоминаниями о спортивной карьере, работе в государственном университете им. А.А.Жданова, в органах прокуратуры Красноярского края, Казахстанской целины, Байкало-Амурской магистрали, Ленинграда, многолетней адвокатской деятельности и становлении юридического факультета в СПбГУГА.
Лестер Туроу. Удача благоволит смелым
Международый бестселлер. Что мы должны сделать, чтобы построить новый, продолжительный и процветающий мир на всей земле.
Павлов А.Н. Евангелие от науки
Курс лекций по современным принципам экологической культуры.
Павлов А.Н. Евангелие от Природы
Популярное изложение основ экологической культуры.
Булыга М. Будь счастлив здесь
Повесть о собственном поиске смысла жизни в трудный период перестройки конца ХХ – начала ХХI вв.
Ю. В. Холопов. Холоп нашего времени: Письма к потомкам
"...О жизни. О себе. О России-матушке. О том, что было в моей жизни. О чем я думал. О чем страдал. Чего добивался. Т.к. эти письма адресованы вам и только вам - они предельно откровенны. Мне ни к чему кривить душой, что-то придумывать. Я попробую изложить жизнь, как я прожил."
Новые публикации в Энциклопедическом Фонде
Правосудие
Правосудие - это идеальная форма судебного вывода, выражающая, прежде всего, интересы государства, которое, в свою очередь, несет основополагающую ответственность перед гражданским обществом и человеком в целом. Само определение "правосудие" по своей правовой природе является "венцом" всей деятельности по прогрессивному совершенствованию современной судебной системы Российской Федерации.
 
Форма (документ)
Форма - это структурированный документ (бланк), выполненный типографским способом, в который данные письменно вводятся в специально отведённые места. Формы однотипных документов имеют единый формат и внешний вид, что существенно упрощает и ускоряет создание и обработку документов. С развитием электронно-вычислительных средств на смену бумажным бланкам приходят электронные формы, являющиеся аналогами соответствующих бумажных бланков.
 
Электронная форма
Электронная форма (ЭФ) - это структурированный электронный документ (бланк), содержащий постоянные и заполняемые элементы, являющийся аналогом соответствующей типографской формы.Постоянные элементы заполняются разработчиком формы и недоступны для редактирования лицу, заполняющему форму. К ним относятся различные пояснения, таблицы с данными, рисунки и другие объекты. Заполняемые элементы - это поля, в которые при заполнении формы вносятся данные.
 
Место человека в животном мире
Человек. Тип: Хордовые. Класс: Млекопитающие или Звери. Отряд: Лемуры и Приматы.  Вариант - Хищники. Вид: Человекообразные. Расы: Монголоидная, Африканская и Европейская и их сочетания в разных пропорциях.   Пол: женский и мужской, в соответствии с естественным назначением в продолжении рода. Организация головного мозга: считает себя выше остальных представителей фауны.
 
Штрих-код цифровой
Штрих-код цифровой - графическая информация, наносимая на поверхность, маркировку или упаковку изделий, представляющая возможность последовательного считывания чёрных и белых полос (либо геометрических фигур) техническими средствами.
 
Принтер светодиодный
Светодиодный принтер (LED printer, от англ. Light emitting diode printer,) предназначен для переноса текстового или графического изображения с цифрового носителя на бумагу. Это один из современных видов принтеров, являющийся представителем параллельной ветви развития технологии лазерной печати. Принцип работы светодиодного принтера аналогичен принципу работы лазерного принтера. Работа принтера основана на принципе сухого электростатического переноса - источник света освещает поверхность фотобарабана, воздействие света вызывает изменение заряда в освещенных частях фотобарабана, за счет чего к ним примагничивается порошкообразный тонер.
 
Адверсативы
Адверсативы (от лат. adversative), слова, выражающие противительные отношения: союзы, наречия: а, но, однако, зато, тем не менее.........
 
Адгезия
Адгезия (от лат. adhaesio - прилипание), слияние двух рядом расположенных единиц: звуков, слов (вышеуказанный).........
 
Адвербиализация
Адвербиализация (от лат. adverbium - наречие), один из видов семантико-грамматического словообразования: переход одной части речи в другую, т.е. конверсия. Конверсией называется образование слов путем изменения состава форм слова (его парадигмы). В результате подобных изменений слово не только переходит в другую часть речи (в данном случае в наречие), но меняет свое грамматическое и лексическое значение; Лицо красиво (красиво кр.
 
Аграмматизм
Аграмматизм (от др.-греч., нечленораздельный, неразборчивый): 1. Расстройство, нарушение речевой деятельности, выражающееся в непонимании значений грамматических конструкций, в неумении правильно оформлять фразу, согласовывать слова в роде, числе и падеже в связи с поражением речевых зон коры головного мозга. 2. Отклонение от грамматических норм в профессиональной и жаргонной речи, в телеграфном стиле, в переписке по Интернет.
 
Новые научные публикации
Очередное не понимание законов физики Николаевым С.А. в статье "Алгоритм Вашего мышления"
Николаев подменяет сложный процесс накопление знаний чтением его не професиональных книжек по физике. Его не приняла научная среда за его безграмотность, и он решил отыграться, строя свою собственную физику. Причем строит с ошибками, с не пониманием простейших явлений, он не знает классическую и квантовую физику, а берется строить сложнейшие построения. Без знания классической физики у него получается ерунда. Чтобы заниматься теоретической физикой надо овладеть ее фундаментом, знанием классической физики, квантовой механики, СТО и ОТО. Причем получив минимум знаний можно приступать к осмыслению полученных знаний. При этом придет понимание, что нужно изменить, а что добавить. Этого минимума знаний у Николаева С.А. нет. Отсюда и его многочисленные ошибки. Осмыслению полученных знаний учат в МФТИ, МГУ и других ведущих вузах. Простому инженеру противопоказано построение новых теорий, так как новые теории возникают на основе старых. Николаев этого не понимает и пытается построить собственную физику, как я уже говорил с простейшими ошибками.
 
Алгоритм Вашего мышления
Каков должен быть алгоритм мышления? Постараемся рассмотреть и построить основные детали этой последовательности.
 
Вычисление присоединенной массы
В гидродинамике вводится понятие присоединенная масса. Алгоритм ее вычисления в книге [1] не изложен. Зная, что процессы в жидкости подчиняются преобразованию Лоренца с фазовой скоростью звука, вместо скорости света, эту присоединенную массу можно вычислить. Учтена форма и ориентация тела с помощью комплексного радиуса тела.
 
Понятие центра инерции в движущемся диэлектрике
Понятие центра инерции справедливо только для малых скоростей. Обобщим его на релятивистские скорости. Между тем говорят о системе центра инерции при нулевом суммарном импульсе, центр инерции покоится, система покоя частиц. Покоя чего? Единственный вразумительный ответ, покоя центра инерции. Значит и при релятивистских скоростях можно ввести понятие центра инерции. Между тем у ЛЛ [1] §14 пишется "Центр инерции одной и той же системы частиц по отношению к различным системам отсчета - это различные точки". Покажем, что определение центра инерции по ЛЛ не удовлетворяет преобразованию Лоренца.
 
Распространение переменных действие-угол на N мерное пространство или свойства Солнечной системы
Переменные действие-угол определяют интегрируемые системы в одномерном случае см. [1]. Построим переменные действие-угол в многомерном случае, тем самым определяя широкий класс интегрируемых систем в многомерном случае. Стоит задача определение формулы решения. Для этого используется частный интегрируемый Гамильтониан плюс общая малая добавка. Но интегрируемый Гамильтониан существует только приближенный, а добавка может иметь малые знаменатели, которые определяют не оправданный рост решения. В данной статье определяется алгоритм, позволяющий описать точное решение задачи взаимодействия тел по законам гравитации Ньютона. Таким образом удается построить алгоритм, определяющий движение планет и их спутников в Солнечной системе. Выяснилась особенность решения. В случае равенства нулю определителя системы уравнений, возможны скачки фазы угловой координаты, что приведет к скачкообразному перемещению тела. Как докажем в тексте статьи солнечная система образовалась из минимума суммарной кинетической и потенциальной энергии системы и имеет несколько наборов значений параметров, минимизирующих суммарную энергию. Имеются малые колебания вокруг точки минимума суммарной потенциальной и кинетической энергии.
 
Получение уравнения Дирака в спинорном представлении
На основании спинорного представления уравнения Клейна-Гордона получено уравнение Дирака. В уравнение Дирака подставлен спинор электромагнитного поля. В спинорах уравнения имеют простой вид и их можно решить. Для одинаковых, не взаимодействующих между собой частиц во внешнем поле получены комплексные значения энергии и импульса. Одинаковым образом описываются как бозоны, так и фермионы с другими квантовыми числами. Как бозоны, так и фермионы не могут иметь одинаковые комплексные координаты, поэтому квантовые числа у них разные. Комплексные собственные значения координаты и импульса имеют дисперсию, равную квадрату мнимой части, поэтому могут одновременно быть измерены. Для взаимодействующих частиц получено разное значение энергии, для каждой частицы свое, а импульс у них одинаковый, т.е. они образуют не меняющееся распределение координат. Определены моменты времени, когда энергия меняет свое значение и меняется квантовое число, сохраняя его до следующего изменения. Причем взаимодействующие частицы расположены на равных безразмерных расстояниях. В размерном виде получается разное расстояние с учетом массы частицы.
 
Доклад ЛжеНобелевская премия по физиологии и медицине 2017 года
Три открытых лауреатами гена не представляют собой биологические часы с ритмом 24 часа. Эти белки не являются задатчиками циркадного ритма 24 часа.
 
Учет параболического профиля давления в случае течения в трубопроводах
Уравнение Шредингера связано с уравнением Навье-Стокса. Получим из уравнения Шредингера уравнение Навье-Стокса в цилиндрической системе координат. Получается первый интеграл трех уравнений Навье-Стокса для потенциального течения. Если воспользоваться разделением переменных, то этот первый интеграл распадается на три интеграла, каждый из которых является одномерным. Определяются разделяющие константы каждого из интегралов в случае декартовой системы координат по потенциальной энергии и определяется решение уравнений Навье-Стокса и Шредингера в новых условиях. В данной статье получено решение уравнения Навье-Стокса для цилиндрической системы координат. Описано комплексное, турбулентное течение и ламинарное действительное течение в трубопроводах. Комплексный, турбулентный режим в трубах может быть разрушительным, а может и безопасным. Найдены условия разрушительного режима. Найдены ограничения на течение с постоянным градиентом во всех сечениях. При больших числах Рейнольдса это приближение не справедливо. Правильным является профиль давления в виде полинома четной степени. Но описание профиля в виде полинома давления имеет свои проблемы. Надо вычислить коэффициенты у формулы, описывающей давления. Для течения в трубопроводах они вычисляются из предельных случаев течения с постоянным градиентом давления во всех сечениях.
 
Решение уравнения Клейна-Гордона описывающее спин частицы
Уравнение Клейна-Гордона связано с уравнением Навье-Стокса. Получим из уравнения Клейна-Гордона уравнение Навье-Стокса. Получается первый интеграл трех уравнений Навье-Стокса для потенциального течения. Если воспользоваться разделением переменных, то этот первый интеграл распадается на три интеграла, каждый из которых является одномерным. Определяются разделяющие константы каждого из интегралов в случае декартовой системы координат по потенциальной энергии и определяется решение уравнений Навье-Стокса и Клейна-Гордона в новых условиях. В случае отсутствия потенциала, т.е. в свободном пространстве, в этих уравнения имеется решение для скорости частицы в виде дельта функции с мнимым множителем. Но аргумент дельта функции линейный по координате, т.е. дельта функция грубо говоря не равна нулю в одной точке. Т.к. множитель у дельта функции мнимый и радиус вращения центра инерции нулевой, она описывает собственное вращение частицы, т.е. спин частицы.
 
Неолиберализм и глобализация
Аннотация. Статья посвящена актуальным проблемам глобализации и неолиберализма. Автор подчеркивает, что либеральные теории сыграли важную роль в истории человечества. Они обосновали необходимость капиталистического способа производства, его прогрессивный характер в движении общества по восходящей линии. Но в настоящее время они являются идеологической базой глобализации, тормозящей развитие человечества и создающей угрозу его существованию.
Ключевые слова. Либерализм, неолиберализм, глобализация, капитализм, прогресс, регресс, необходимость, рационализм, иррационализм, деинтеллектуализация, унификация, стандартизация.
Annotation. The article is devoted to topical problems of globalization and neoliberalism. The author stresses that the liberal theories played an important role in the history of mankind. They justified the need of the capitalist mode of production, its progressive nature in society movement on the uplink. But nowdays these theories are the ideological basis of globalization, hindering the development of mankind and creating a threat to its existence.
Keywords. Liberalism, neoliberalism, globalization, capitalism, progress, regress, necessity, rationality, irrationality, deintellectualization, unification, standardization.
 
Яндекс цитирования