|
|
|
Адрес редакции:
191186, Санкт-Петербург,
ул.Миллионная, д. 5,
СЗТУ, кафедра ВМКСиС.
Факс: (812) 700-99-31 |
|
|
|
Монитор
|
|
До пятидесятых годов 20-го века компьютеры выводили информацию только на печатающие устройства. Интересно отметить, что достаточно часто компьютеры тех лет оснащались осциллографами, которые, однако, использовались не для вывода информации, а всего лишь для проверки электронных цепей вычислительной машины. Впервые в 1950 году в Кембриджском университете (Англия) электронно-лучевая трубка осциллографа была использована для вывода графической информации на компьютере EDSAC (Electronic Delay Storage Automatic Computer).
Примерно полтора года спустя английский ученый Кристофер Стретчи написал для компьютера «Марк 1» программу, игравшую в шашки и выводившую информацию на экран. Однако это были лишь отдельные примеры, не носившие серьезного системного характера.
Реальный прорыв в представлении графической информации на экране дисплея произошел в Америке в рамках военного проекта на базе компьютера «Вихрь». Данный компьютер использовался для фиксации информации о вторжении самолетов в воздушное пространство США.
Первая демонстрация «Вихря» состоялась 20 апреля 1951 года — радиолокатор посылал информацию о положении самолета компьютеру, и тот передавал на экран положение самолета-цели, которая отображалась в виде движущейся точки и буквы T (Target). Это был первый крупный проект, в котором электронно-лучевая трубка использовалась для отображения графической информации.
Сегодня самый распространенный тип мониторов - это "CRT-мониторы (Cathode Ray Tube). Как видно из названия, в основе всех подобных мониторов лежит катодно-лучевая трубка, но это дословный перевод, технически правильно говорить "электронно-лучевая трубка" (ЭЛТ) . Используемая в этом типе мониторов технология была создана много лет назад и первоначально создавалась в качестве специального инструментария для измерения переменного тока, проще говоря - для осциллографа. Развитие этой технологии, применительно к созданию мониторов, за последние годы привело к производству все больших по размеру экранов с высоким качеством и при низкой стоимости.
Рассмотрим принципы работы CRT-мониторов. CRT- или ЭЛТ-монитор имеет стеклянную трубку, внутри которой вакуум, т.е. весь воздух удален. С фронтальной стороны внутренняя часть стекла трубки покрыта люминофором (Luminofor). В качестве люминофоров для цветных ЭЛТ используются довольно сложные составы на основе редкоземельных металлов - иттрия, эрбия и т.п.
Люминофор - это вещество, которое испускает свет при бомбардировке его заряженными частицами.
Для создания изображения в CRT-мониторе используется электронная пушка, которая испускает поток электронов сквозь металлическую маску или решетку на внутреннюю поверхность стеклянного экрана монитора, которая покрыта разноцветными люминофорными точками. Поток электронов на пути к фронтальной части трубки проходит через модулятор интенсивности и ускоряющую систему, работающие по принципу разности потенциалов. В результате, электроны приобретают большую энергию, часть из которой расходуется на свечение люминофора. Электроны попадают на люминофорный слой, после чего энергия электронов преобразуется в свет, т.е. поток электронов заставляет точки люминофора светиться. Эти светящиеся точки люминофора формируют изображение, которое вы видите на вашем мониторе. Как правило, в цветном CRT-мониторе используются три электронные пушки, в отличие от одной пушки, применяемой в монохромных мониторах, которые сейчас практически не производятся и мало кому интересны.
Все мы знаем или слышали о том, что наши глаза реагируют на основные цвета: красный (Red), зеленый (Green) и синий (Blue) и на их комбинации, которые создают бесконечное число цветов.
Люминофорный слой, покрывающий фронтальную часть электронно-лучевой трубки, состоит из очень маленьких элементов (настолько маленьких, что человеческий глаз их не всегда может различить). Эти люминофорные элементы воспроизводят основные цвета, фактически имеются три типа разноцветных частиц, чьи цвета соответствуют основным цветам RGB (отсюда и название группы из люминофорных элементов – триады).
Люминофор начинает светиться, как было сказано выше, под воздействием ускоренных электронов, которые создаются тремя электронными пушками. Каждая из трех пушек соответствует одному из основных цветов и посылает пучок электронов на различные частицы люминофор, чье свечение основными цветами с различной интенсивностью комбинируется, и, в результате, формируется изображение с требуемым цветом. Например, если активировать одновременно красную, зеленую и синюю люминофорные частицы, то их комбинация сформирует белый цвет.
Для управления электронно-лучевой трубкой необходима и управляющая электроника, качество которой во многом определяет и качество монитора. Итак, повторимся: каждая пушка излучает электронный луч (или поток, или пучок), который влияет на люминофорные элементы разного цвета (зеленого, красного или синего). Понятно, что электронный луч, предназначенный для красных люминофорных элементов, не должен влиять на люминофор зеленого или синего цвета.
Чтобы добиться такого действия используется специальная маска, чья структура зависит от типа кинескопов , обеспечивающая дискретность (растровость) изображения. В ЭЛТ-трубках применяются щелевые и теневые маски, хотя правильнее сказать, что они все теневые.
Далее рассмотрим два основных типа CRT-мониторов, отличающихся друг от друга по конструктивным особенностям масок: теневые маски и аппертурная решётка.
Итак, самые распространенные типы масок - это теневые, а они бывают двух типов: "Shadow Mask" (теневая маска) и "Slot Mask" (щелевая маска).
Теневая маска (shadow mask) - это самый распространенный тип масок для CRT-мониторов. Теневая маска состоит из металлической сетки перед частью стеклянной трубки с люминофорным слоем. Как правило, большинство современных теневых масок изготавливают из инвара (invar, сплав железа и никеля). Отверстия в металлической сетке работают, как прицел , именно этим обеспечивается то, что электронный луч попадает только на требуемые люминофорные элементы, и только в определенных областях. Теневая маска создает решетку с однородными точками (еще называемыми триады), где каждая такая точка состоит из трех люминофрных элементов основных цветов - зеленого, красного и синего – которые светятся с различной интенсивностью под воздействием лучей из электронных пушек. Изменением тока каждого из трех электронных лучей можно добиться произвольного цвета элемента изображения, образуемого триадой точек.
Минимальное расстояние между люминофорными элементами одинакового цвета называется dot pitch (или шаг точки) и является индексом качества изображения. Шаг точки обычно измеряется в миллиметрах (мм). Чем меньше значение шага точки, тем выше качество воспроизводимого на мониторе изображения.
Теневая маска применяется в большинстве современных мониторов - Hitachi, Panasonic, Samsung, Daewoo, LG, Nokia, Viewsonic.
Щелевая маска (slot mask) - это технология, широко применяемая компанией NEC, под именем "CromaClear". В данном случае люминофорные элементы расположены в вертикальных эллиптических ячейках, а маска сделана из вертикальных линий. Фактически, вертикальные полосы разделены на эллиптические ячейки, которые содержат группы из трех люминофорных элементов трех основных цветов. Минимальное расстояние между двумя ячейками называется slot pitch (щелевой шаг). Чем меньше значение slot pitch, тем выше качество изображения на мониторе.
Щелевая маска используется, помимо мониторов от NEC (где ячейки эллиптические), в мониторах Panasonic с трубкой PureFlat (ранее называвшейся PanaFlat).
LG использует плоскую щелевую трубку Flatron с шагом 0.24 в своих мониторах. Никакого отношения к Trinitron эта технология не имеет.
Компания Sony разработала свою собственную технологию создания плоских трубок - FD Trinitron. Разумеется, с использованием апертурной решётки, но не обычной, а с постоянным шагом.
Компания Mitsubishi разработала технологию DiamondTron NF. Судя по всему, никакой связи с FD Trinitron от Sony нет. При этом в трубках DiamondTron NF применяется апертурная решетка с переменным шагом.
Есть и еще один вид трубок, в которых используется "Aperture Grill" (апертурная, или теневая решетка). Эти трубки стали известны под именем Trinitron и впервые были представлены на рынке компанией Sony еще в 1982 году. В трубках с апертурной решеткой применяется оригинальная технология, где имеется три лучевые пушки, три катода и три модулятора, но при этом имеется одна общая фокусировка.
Апертурная решетка (aperture grill) - это тип маски, используемый разными производителями в своих технологиях для производства кинескопов, носящих разные названия, но имеющих одинаковую суть, например, технология Trinitron от Sony или Diamondtron от Mitsubishi. Это решение не включает в себя металлическую решетку с отверстиями, как в случае с теневой маской, а имеет решетку из вертикальных линий. Вместо точек с люминофорными элементами трех основных цветов апертурная решетка содержит серию нитей, состоящих из люминофорных элементов, выстроенных в виде вертикальных полос трех основных цветов. Такая система обеспечивает высокую контрастность изображения и хорошую насыщенность цветов, что вместе обеспечивает высокое качество мониторов с трубками на основе этой технологии. Маска, применяемая в трубках фирмы Sony (Mitsubishi, ViewSonic), представляет собой тонкую фольгу, на которой нанесены тонкие вертикальные линии. Она держится на горизонтальной (одной в 15", двух в 17", трех и более в 21") проволочке, тень от которой видна на экране. Эта проволочка применяется для гашения колебаний и называется damper wire. Ее хорошо видно, особенно при светлом фоне изображения на мониторе.
Минимальное расстояние между полосами люминофора одинакового цвета называется strip pitch (или шагом полосы) и измеряется в миллиметрах (мм). Чем меньше значение strip pitch, тем выше качество изображения на мониторе.
Апертурная решётка используется в мониторах от Viewsonic, Radius, Nokia, LG, CTX, Mitsubishi, во всех мониторах от SONY.
Заметим, что нельзя напрямую сравнивать размер шага для трубок разных типов: шаг точек (или триад) трубки с теневой маской измеряется по диагонали, в то время как шаг апертурной решетки, иначе называемый горизонтальным шагом точек, - по горизонтали. Поэтому при одинаковом шаге точек трубка с теневой маской имеет большую плотность точек, чем трубка с апертурной решеткой. Для примера: 0.25 мм strip pitch приблизительно эквивалентно 0.27 мм dot pitch.
Оба типа трубок имеют свои преимущества и своих сторонников. Трубки с теневой маской дают более точное и детализированное изображение, поскольку свет проходит через отверстия в маске с четкими краями. Поэтому мониторы с такими CRT хорошо использовать при интенсивной и длительной работе с текстами и мелкими элементами графики, например в CAD/CAM-приложениях. Трубки с апертурной решеткой имеют более ажурную маску, она меньше заслоняет экран, и позволяет получить более яркое, контрастное изображение в насыщенных цветах. Мониторы с такими трубками хорошо подходят для настольных издательских систем и других приложений, ориентированных на работу с цветными изображениями. В CAD-системах мониторы с трубкой, в которой используется апертурная решетка, недолюбливают не потому, что они хуже воспроизводят мелкие детали, чем трубки с теневой маской, а потому что экран монитора типа Trinitron - плоский по вертикали и выпуклый по горизонтали, т.е. имеет выделенное направление.
Как мы уже упоминали, кроме электронно-лучевой трубки внутри монитора есть еще и управляющая электроника, которая обрабатывает сигнал, поступающий напрямую от видеокарты вашего PC. Эта электроника должна оптимизировать усиление сигнала и управлять работой электронных пушек, которые инициируют свечение люминофора, создающего изображение на экране. Выводимое на экране монитора изображение выглядит стабильным, хотя, на самом деле, таковым не является. Изображение на экране воспроизводится в результате процесса, в ходе которого свечение люминофорных элементов инициируется электронным лучом, проходящим последовательно по строкам в следующем порядке: слева направо и сверху вниз на экране монитора.
Этот процесс происходит очень быстро, поэтому нам кажется, что экран светится постоянно. В сетчатке наших глаз изображение хранится около 1/20 секунды. Это означает, что если электронный луч будет двигаться по экрану медленно, мы можем видеть это движение как отдельную движущуюся яркую точку, но когда луч начинает двигаться, быстро прочерчивая на экране строку хотя бы 20 раз в секунду, наши глаза не увидят движущейся точки, а увидят лишь равномерную линию на экране. Если теперь заставить луч последовательно пробегать по многим горизонтальным линиям сверху вниз за время меньшее 1/25 секунды, мы увидим равномерно освещенный экран с небольшим мерцанием. Движение самого луча будет происходить настолько быстро, что наш глаз не будет в состоянии его заметить. Чем быстрее электронный луч проходит по всему экрану, тем меньше будет заметно и мерцание картинки.
Считается, что такое мерцание становится практически незаметным при частоте повторения кадров (проходов луча по всем элемента изображения) примерно 75 в секунду. Однако, эта величина в некоторой степени зависит от размера монитора. Дело в том, что периферийные области сетчатки глаза содержат светочувствительные элементы с меньшей инерционностью. Поэтому мерцание мониторов с большими углами обзора становится заметным при больших частотах кадров. Способность управляющей электроники формировать на экране мелкие элементы изображения зависит от ширины полосы пропускания (bandwidth). Ширина полосы пропускания монитора пропорциональна числу пикселей, из которых формирует изображение видеокарта вашего компьютера. К ширине полосы пропускания монитора мы еще вернемся.
Теперь перейдем к другому типу мониторов – LCD.
Первые жидкокристаллические материалы были открыты более 100 лет назад австрийским ученым Ф. Ренитцером.Понятие "жидкие кристаллы" относится не прошлому, а к позапрошлому веку - оно появилось ещё в 1889 году! И причём не в электронике, а в ботанике. В электронику жидкие кристаллы пришли только в 1968 году, когда ими заинтересовалась RCA и изобрела первый жидкокристаллический дисплей. В 1969 году Джеймс Фергюсон (James Fergason) обнаружил эффект скручивания жидких кристаллов-нематиков (twisted nematic effect, TN effect). Это открытие было фундаментальным, поскольку все ЖК-дисплеи используют принцип вращения кристалла в плоскости поляризации. В 1973 году Джордж Грей (George Gray) изобрёл бифениловый (biphenyl) жидкий кристалл, который стабильно работал в условиях нормального давления и температуры. Ещё в 1986 году NEC выпустила первый портативный компьютер с ЖК-дисплеем (LCD, Liquid Crystal Display). В 1995 году диагональ ЖК-панелей превысила 28" (71 см).
Первое свое применение жидкие кристаллы нашли в дисплеях для калькуляторов и в кварцевых часах, а затем их стали использовать в мониторах для портативных компьютеров. Сегодня, в результате прогресса в этой области, начинают получать все большее распространение LCD-мониторы для настольных компьютеров. Далее речь пойдет только о традиционных LCD-мониторах, так называемых Nematic LCD.
LCD (Liquid Crystal Display, жидкокристаллические мониторы) сделаны из вещества, которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Фактически, это жидкости, обладающие анизотропией свойств (в частности, оптических), связанных с упорядоченностью в ориентации молекул. Жидкие кристаллы были открыты давным-давно, но изначально они использовались для других целей. Молекулы жидких кристаллов под воздействием электричества могут изменять свою ориентацию и вследствие этого изменять свойства светового луча проходящего сквозь них. Основываясь на этом открытии и в результате дальнейших исследований, стало возможным обнаружить связь между повышением электрического напряжения и изменением ориентации молекул кристаллов для обеспечения создания изображения.
Экран LCD-монитора представляет собой массив маленьких сегментов (называемых пикселями), которыми можно манипулировать для отображения информации. LCD-монитор имеет несколько слоев, где ключевую роль играют две панели , сделанные из свободного от натрия и очень чистого стеклянного материала, называемого субстрат или подложка, которые собственно и содержат тонкий слой жидких кристаллов между собой. На панелях имеются бороздки, которые направляют кристаллы, сообщая им специальную ориентацию. Бороздки расположены таким образом, что они параллельны на каждой панели, но перпендикулярны между двумя панелями. Продольные бороздки получаются в результате размещения на стеклянной поверхности тонких пленок из прозрачного пластика, который затем специальным образом обрабатывается. Соприкасаясь с бороздками, молекулы в жидких кристаллах ориентируются одинаково во всех ячейках. Молекулы одной из разновидностей жидких кристаллов(нематиков) в отсутствии напряжения поворачивают вектор электрического (и магнитного) поля в данной световой волне на некоторый угол в плоскости, перпендикулярной оси распространения пучка. Нанесение бороздок на поверхность стекла позволяет обеспечить одинаковые повороты плоскости поляризации для всех ячеек. Две панели расположены очень близко друг к другу. Жидкокристаллическая панель освещается источником света (в зависимости от того, где он расположен, жидкокристаллические панели работают на отражение или на прохождение света). Плоскость поляризации светового луча поворачивается на 90° при прохождении одной панели.
При появлении электрического поля молекулы жидких кристаллов частично выстраиваются вдоль поля, и угол поворота плоскости поляризации света становится отличным от 90 градусов.
Поворот плоскости поляризации светового луча незаметен для глаза, поэтому возникла необходимость добавить к стеклянным панелям еще два других слоя, представляющих собой поляризационные фильтры. Эти фильтры пропускают только ту компоненту светового пучка, у которой ось поляризации соответствует заданному. Поэтому при прохождении поляризатора пучок света будет ослаблен в зависимости от угла между его плоскостью поляризации и осью поляризатора. При отсутствии напряжения ячейка прозрачна вот по какой причине: первый поляризатор пропускает только свет с соответствующим вектором поляризации. Благодаря жидким кристаллам вектор поляризации света поворачивается, и к моменту прохождения пучка ко второму поляризатору он уже повернут так, что проходит через второй поляризатор без проблем.
В присутствии электрического поля поворота вектора поляризации происходит на меньший угол, тем самым второй поляризатор становится только частично прозрачным для излучения. Если разность потенциалов будет такой, что поворота плоскости поляризации в жидких кристаллах не произойдет совсем, то световой луч будет полностью поглощен вторым поляризатором, и экран при освещении сзади будет казаться черным (лучи подсветки поглощаются в экране полностью). Если расположить большое число электродов, которые создают разные электрические поля в отдельных местах экрана (ячейки), то появится возможность, при правильном управлении потенциалами этих электродов, отображать на экране буквы и другие элементы изображения. Электроды помещаются в прозрачный пластик и могут иметь любую форму. Технологические новшества позволили ограничить их размеры величиной маленькой точки, соответственно, на одной и той же площади экрана можно расположить большее число электродов, что увеличивает разрешение LCD-монитора и позволяет нам отображать даже сложные изображения в цвете. Для вывода цветного изображения необходима подсветки монитора сзади, так, чтобы свет порождался в задней части LCD-дисплея. Это необходимо для того, чтобы можно было наблюдать изображение хорошего качества, даже если окружающая среда не является светлой. Цвет получается в результате использования трех фильтров, которые выделяют из излучения источника белого света три основные компоненты. Комбинация трех основных цветов для каждой точки или пикселя экрана дает возможность воспроизвести любой цвет.
Вообще-то, в случае с цветом есть несколько возможностей: можно сделать несколько фильтров друг за другом (что приводит к малой доле проходящего излучения), можно воспользоваться свойством жидко-кристаллической ячейки - при изменении напряженности электрического поля угол поворота плоскости поляризации излучения изменяется по-разному для компонент света с разной длиной волны. Эту особенность можно использовать для того, чтобы отражать (или поглощать) излучение заданной длины волны (проблема состоит в необходимости точно и быстро изменять напряжение). Какой именно механизм используется, зависит от конкретного производителя. Первый метод проще, второй эффективнее.
Первые LCD-дисплеи были очень маленькими, около 8 дюймов, в то время как сегодня они достигли 17"размеров для использования в ноутбуках, а для настольных компьютеров производятся 19" и более LCD-мониторы. Вслед за увеличением размеров следует увеличение разрешения, следствием чего является появление новых проблем, которые были решены с помощью появившихся специальных технологий, все это мы опишем далее. Одной из первых проблем была необходимость стандарта в определении качества отображения при высоких разрешениях. Первым шагом на пути к цели было увеличение угла поворота плоскости поляризации света в кристаллах с 90° до 270° с помощью STN технологии.
STN - это акроним, означающий "Super Twisted Nematic". Технология STN позволяет увеличить торсионный угол (угол кручения) ориентации кристаллов внутри LCD дисплея с 90° до 270°, что обеспечивает лучшую контрастность изображения при увеличении размеров монитора. Часто STN-ячейки используются в паре. Это называется DSTN (Double Super Twisted Nematic), и этот метод очень популярен среди мониторов для портативных компьютеров, использующих дисплеи с пассивной матрицей, где DSTN обеспечивает улучшение контрастности при отображении изображений в цвете.
Две STN-ячейки располагаются вместе так, чтобы при вращении они двигались в разных направлениях. Также STN-ячейки используются в режиме TSTN (Triple Super Twisted Nematic), когда два тонких слоя пластиковой пленки (полимерной пленки) добавляются для улучшения цветопередачи цветных дисплеев или для обеспечения хорошего качества монохромных мониторов.
Мы упомянули термин "пассивная матрица", сделаем пояснение. Термин "пассивная матрица" (passive matrix) появился в результате разделения монитора на точки, каждая из которых, благодаря электродам, может задавать ориентацию плоскости поляризации луча независимо от остальных, так что в результате каждый такой элемент может быть подсвечен индивидуально для создания изображения. Матрица называется пассивной, потому что технология создания LCD-дисплеев, которую мы только что описали, не может обеспечить быструю смену информации на экране. Изображение формируется строка за строкой путем последовательного подвода управляющего напряжения на отдельные ячейки, делающего их прозрачными. Из-за довольно большой электрической емкости ячеек напряжение на них не может изменяться достаточно быстро, поэтому обновление картинки происходит медленно. Только что описанный дисплей имеет много недостатков с точки зрения качества, потому что изображение не отображается плавно и дрожит на экране. Маленькая скорость изменения прозрачности кристаллов не позволяет правильно отображать движущиеся изображения. Мы также должны принимать во внимание тот факт, что между соседними электродами возникает некоторое взаимное влияние, которое может проявляться в виде колец на экране.
Для решения части вышеописанных проблем применяют специальные хитрости, например, разделение экрана на две части и применение двойного сканирования в одно и тоже время обоих частей, в результате экран дважды регенерируется, и изображение не дрожит и плавно отображается.
Также лучших результатов с точки зрения стабильности, качества, разрешения, гладкости и яркости изображения можно добиться, используя экраны с активной матрицей, которые, впрочем, стоят дороже. В активной матрице используются отдельные усилительные элементы для каждой ячейки экрана, компенсирующие влияние емкости ячеек и позволяющие значительно уменьшить время изменения их прозрачности.
Активная матрица (active matrix) имеет массу преимуществ по сравнению с пассивной матрицей. Например, лучшая яркость и возможность смотреть на экран даже с отклонением до 45° и более (т.е. при угле обзора 120°-140°) без ущерба качеству изображения, что невозможно в случае с пассивной матрицей, которая позволяет видеть качественное изображение только с фронтальной позиции по отношению к экрану. Заметим, что дорогие модели LCD-мониторов с активной матрицей обеспечивают угол обзора в 160°, и есть все основания предполагать, что технология будет и дальше совершенствоваться. В случае с активной матрицей вы можете отображать движущиеся изображения без видимого дрожания, так как время реакции дисплея с активной матрицей около 50 ms против 300 ms для пассивной матрицы, и качество контрастности лучше, чем у CRT-мониторов. Следует отметить, что яркость отдельного элемента экрана остается неизменной на всем интервале времени между обновлениями картинки, а не представляет собой короткий импульс света, излучаемый элементом люминофора CRT-монитора сразу после похождения по этому элементу электронного луча. Именно поэтому для LCD-мониторов достаточной является частота регенерации 60 Гц. Благодаря лучшему качеству изображений эта технология также используется и в мониторах для настольных компьютеров, что позволяет создавать компактные мониторы, менее опасные для нашего здоровья.
Функциональные возможности LCD-мониторов с активной матрицей почти такие же, как у дисплеев с пассивной матрицей. Разница заключается в матрице электродов, которая управляет ячейками жидких кристаллов дисплея. В случае с пассивной матрицей разные электроды получают электрический заряд циклическим методом при построчной регенерации дисплея, а в результате разряда емкостей элементов изображение исчезает, так как кристаллы возвращаются к своей изначальной конфигурации. В случае с активной матрицей к каждому электроду добавлен запоминающий транзистор, который может хранить цифровую информацию (двоичные значения 0 или 1), и в результате изображение сохраняется до тех пор, пока не поступит другой сигнал. Частично проблема отсрочки затухания изображения в пассивных матрицах решается за счет использования большего числа жидкокристаллических слоев для увеличения пассивности и уменьшения перемещений, теперь же, при использовании активных матриц, появилась возможность сократить число жидкокристаллических слоев. Запоминающие транзисторы должны производиться из прозрачных материалов, что позволит световому лучу проходить сквозь них, а значит, транзисторы можно располагать на тыльной части дисплея, на стеклянной панели, которая содержит жидкие кристаллы. Для этих целей используются пластиковые пленки, называемые "Thin Film Transistor" (или просто TFT).
Thin Film Transistor (TFT), т.е. тонкопленочный транзистор, действительно очень тонкий, его толщина - в пределах от 1/10 до 1/100 микрона. Технология создания TFT очень сложна, при этом имеются трудности с достижением приемлемого процента годных изделий из-за того, что число используемых транзисторов очень велико. Заметим, что монитор, который может отображать изображение с разрешением 800х600 пикселей в SVGA режиме и только с тремя цветами, имеет 1440000 отдельных транзисторов. Производители устанавливают нормы на предельное количество транзисторов, которые могут быть нерабочими в LCD-дисплее. Правда, у каждого производителя свое мнение о том, какое количество транзисторов может не работать.
Вкратце расскажем о разрешении LCD-мониторов. Это разрешение одно, и его еще называют native, оно соответствует максимальному физическому разрешению CRT-мониторов. Именно в native разрешении LCD-монитор воспроизводит изображение лучше всего. Это разрешение определяется размером пикселей, который у LCD-монитора фиксирован. Например, если LCD-монитор имеет native разрешение 1024x768, то это значит, что на каждой из 768 линий расположено 1024 электродов, читай: пикселей. При этом есть возможность использовать и более низкое, чем native, разрешение.
Для этого есть два способа. Первый называется "Centering" (центрирование); суть метода в том, что для отображения изображения используется только то количество пикселей, которое необходимо для формирования изображения с более низким разрешением. В результате изображение получается не во весь экран, а только в середине. Все неиспользуемые пиксели остаются черными, т.е. вокруг изображения образуется широкая черная рамка. Второй метод называется "Expansion" (растяжение). Суть его в том, что при воспроизведении изображения с более низким, чем native, разрешением используются все пиксели, т.е. изображение занимает весь экран. Однако, из-за того, что изображение растягивается на весь экран, возникают небольшие искажения, и ухудшается резкость. Поэтому при выборе LCD-монитора важно четко знать, какое именно разрешение вам нужно.
Отдельно стоит упомянуть о яркости LCD-мониторов, так как пока нет никаких стандартов для определения того, достаточной ли яркостью обладает LCD-монитор. При этом в центре яркость LCD-монитора может быть на 25% выше, чем у краев экрана. Единственный способ определить, подходит ли вам яркость конкретного LCD-монитора, это сравнить его яркость с другими LCD-мониторами.
И последний параметр, о котором нужно упомянуть, это контрастность. Контрастность LCD-монитора определяется отношением яркостей между самым ярким белым и самым темным черным цветом. Хорошим контрастным соотношением считается 120:1, что обеспечивает воспроизведение живых насыщенных цветов. Контрастное соотношение 300:1 и выше используется тогда, когда требуется точное отображение черно-белых полутонов. Но, как и в случае с яркостью, пока нет никаких стандартов, поэтому главным определяющим фактором являются ваши глаза.
Стоит отметить и такую особенность части LCD-мониторов, как возможность поворота самого экрана на 90°, с одновременным автоматическим разворотом изображения. В результате, например, если вы занимаетесь версткой, то теперь лист формата A4 можно полностью уместить на экране без необходимости использовать вертикальную прокрутку, чтобы увидеть весь текст на странице. Правда, среди CRT-мониторов тоже есть модели с такой возможностью, но они крайне редки. В случае с LCD-мониторами эта функция становиться почти стандартной.
К преимуществам LCD-мониторов можно отнести то, что они действительно плоские в буквальном смысле этого слова, а создаваемое на их экранах изображение отличается четкостью и насыщенностью цветов. Отсутствие искажений на экране и массы других проблем, свойственных традиционным CRT-мониторам. Добавим, что потребляемая и рассеиваемая мощность у LCD-мониторов существенно ниже, чем у CRT-мониторов. Ниже мы приводим сводную таблицу сравнения LCD-мониторов с активной матрицей и CRT-мониторов:
|
Параметры |
Active Matrix LCD monitor |
CRT monitor |
Разрешение |
Одно разрешение с фиксированным размером пикселей. Оптимально можно использовать только в этом разрешении; в зависимости от поддерживаемых функций расширения или компрессии можно использовать более высокое или более низкое разрешение, но они не оптимальны. |
Поддерживаются различные разрешения. При всех поддерживаемых разрешениях монитор можно использовать оптимальным образом. Ограничение накладывается только приемлемостью частоты регенерации. |
Частота регенерации |
Оптимальная частота 60 Гц, чего достаточно для отсутствия мерцания. |
Только при частотах свыше 75 Гц отсутствует явно заметное мерцание. |
Точность отображения цвета |
Поддерживается True Color и имитируется требуемая цветовая температура. |
Поддерживается True Color и при этом на рынке имеется масса устройств калибровки цвета, что является несомненным плюсом. |
Формирование изображения |
Изображение формируется пикселями, число которых зависят только от конкретного разрешения LCD-панели. Шаг пикселей зависит только от размера самих пикселей, но не от расстояния между ними. Каждый пиксель формируется индивидуально, что обеспечивает великолепную фокусировку, ясность и четкость. Изображение получается более целостным и гладким. |
Пиксели формируются группой точек (триады) или полосок. Шаг точки или линии зависит от расстояния между точками или линиями одного цвета. В результате, четкость и ясность изображения сильно зависит от размера шага точки или шага линии и от качества CRT. |
Угол обзора |
В настоящее время стандартным является угол обзора 120o и выше; с дальнейшим развитием технологий следует ожидать увеличения угла обзора. |
Отличный обзор под любым углом. |
Энергопотребление и излучения |
Практически никаких опасных электромагнитных излучений нет. Уровень потребления энергии примерно на 70% ниже, чем у стандартных CRT-мониторов. |
Всегда присутствует электромагнитное излучение, однако его уровень зависит от того, соответствует ли CRT d какому-либо стандарту безопасности. Потребление энергии в рабочем состоянии на уровне 80 Вт. |
Интерфейс монитора |
Цифровой интерфейс, однако большинство LCD-мониторов имеют встроенный аналоговый интерфейс для подключения к наиболее распространенным аналоговым выходам видеоадаптеров. |
Аналоговый интерфейс. |
Сфера применения |
Стандартный дисплей для мобильных систем. В последнее время начинает завоевывать место и в качестве монитора для настольных компьютеров. Идеально подходит в качестве дисплея для компьютеров, т.е. для работы в интернет, с текстовыми процессорами и т.д. |
Стандартный монитор для настольных компьютеров. Крайне редко используются в мобильном виде. Идеально подходит для отображения видео и анимации. |
|
Тем не менее, существуют и другие технологии, которые создают и развивают разные производители.Пример таких технологий - PDP (Plasma Display Panels), или просто "плазменные панели",FED (Field Emission Display), LEP (Light Emitting Polymer), OLED (Organic Light Emitting Diode Displays) от компании CDT
Многие даже и не подозревают, но плазменная технология не такая уж и новая, даже несмотря на то, что её промышленное использование началось в начале 90-х годов. Исследования плазменных дисплеев проводились в США ещё четыре десятилетия назад, в 60-х годах. Технология была разработана четырьмя учёными: Битцером (Bitzer), Слоттоу (Slottow), Вилсоном (Willson) и Аророй (Arora). Первый прототип дисплея появился довольно быстро, в 1964 году. Матрица, революционная для свого времени, имела размер 4 на 4 пикселя, которые излучали монохромный голубой цвет. Затем, в 1967 году, размер матрицы был увеличен до 16x16 пикселей, на этот раз она излучала монохромный тёмно-красный цвет (с помощью неона).
Вполне естественно, что эта технология заинтересовала производителей, и в 1970 году к работе присоединились такие компании, как IBM, NEC, Fujitsu и Matsushita. К сожалению, из-за отсутствия рынка, оправдывающего промышленное производство, к 1987 году разработки в США были практически остановлены, и последней компанией, поднявшей лапки кверху, была IBM. В США осталась горстка учёных, продолживших работать над этой технологией, однако основные исследования были перенесены в Японию. Первая коммерческая модель появилась на рынке в начале 90-х годов. Fujitsu первой преодолела 21" барьер.
Работа плазменных мониторов очень похожа на работу неоновых ламп, которые сделаны в виде трубки, заполненной инертным газом низкого давления. Внутрь трубки помещена пара электродов между которыми зажигается электрический разряд и возникает свечение. Плазменные экраны создаются путем заполнения пространства между двумя стеклянными поверхностями инертным газом, например, аргоном или неоном. Затем на стеклянную поверхность помещают маленькие прозрачные электроды, на которые подается высокочастотное напряжение. Под действием этого напряжения в прилегающей к электроду газовой области возникает электрический разряд. Плазма газового разряда излучает свет в ультрафиолетовом диапазоне, который вызывает свечение частиц люминофора в диапазоне, видимом человеком. Фактически, каждый пиксель на экране работает, как обычная флуоресцентная лампа (иначе говоря, лампа дневного света).
Высокая яркость и контрастность наряду с отсутствием дрожания являются большими преимуществами таких мониторов. Кроме того, угол по отношению к нормали, под которым можно увидеть нормальное изображение на плазменных мониторах, существенно больше, чем 45° в случае с LCD-мониторами. Главными недостатками такого типа мониторов является довольно высокая потребляемая мощность, возрастающая при увеличении диагонали монитора, и низкая разрешающая способность, обусловленная большим размером элемента изображения. Кроме этого, свойства люминофорных элементов быстро ухудшаются, и экран становится менее ярким, поэтому срок службы плазменных мониторов ограничен .
Одним из лучших технологических направлений в области создания мониторов, которое совмещает в себе особенности обеих технологий, описанных нами выше, является технология FED (Field Emission Display)
Мониторы FED основаны на процессе, который немного похож на тот, что применяется в CRT-мониторах, так как в обоих методах применяется люминофор, светящийся под воздействием электронного луча. Главное отличие между CRT и FED мониторами состоит в том, что CRT-мониторы имеют три пушки, которые испускают три электронных луча, последовательно сканирующих панель, покрытую люминофорным слоем, а в FED-мониторе используется множество маленьких источников электронов, расположенных за каждым элементом экрана, и все они размещаются в пространстве, по глубине меньшем, чем требуется для CRT. Каждый источник электронов управляется отдельным электронным элементом, так же, как это происходит в LCD-мониторах, и каждый пиксель затем излучает свет, благодаря воздействию электронов на люминофорные элементы, как и в традиционных CRT-мониторах. При этом FED-мониторы очень тонкие.
Размер, разрешение и частота обновления Теперь логично перейти к размерам, разрешениям и частоте обновления. В случае с мониторами, размер - один из ключевых параметров. Монитор требует пространства для своей установки, а пользователь хочет комфортно работать с требуемым разрешением. Кроме этого, необходимо, чтобы монитор поддерживал приемлемую частоту регенерации или обновления экрана (refresh rate). При этом все три параметра - размер (size), разрешение (resolution) и частота регенерации (refresh rate) - должны всегда рассматриваться вместе, если вы хотите убедиться в качестве монитора, который решили купить, потому что все эти параметры жестко связаны между собой, и их значения должны соответствовать друг другу.
Разрешение монитора (или разрешающая способность) связана с размером отображаемого изображения и выражается в количестве точек по ширине (по горизонтали) и высоте (по вертикали) отображаемого изображения. Например, если говорят, что монитор имеет разрешение 640x480, это означает, что изображение состоит из 640x480=307200 точек в прямоугольнике, чьи стороны соответствуют 640 точкам по ширине и 480 точкам по высоте. Это объясняет, почему более высокое разрешение соответствует отображению более содержательного (детального) изображения на экране. Понятно, что разрешение должно соответствовать размеру монитора, иначе изображение будет слишком маленьким, чтобы его разглядеть. Возможность использования конкретного разрешения зависит от различных факторов, среди которых возможности самого монитора, возможности видеокарты и объем доступной видеопамяти, которая ограничивает число отображаемых цветов.
Выбор размера монитора жестко связан с тем, как вы используете свой компьютер: выбор зависит от того, какие приложения вы обычно используете, например, играете, используете текстовый процессор, занимаетесь анимацией, используете CAD и т.д. Понятно, что, в зависимости от того, какое приложение вы используете, вам требуется отображение с большей или меньшей детализацией. На рынке традиционных CRT-мониторов под размером обычно понимают размер диагонали монитора, при этом размер видимой пользователем области экрана обычно несколько меньше, в среднем, на 1", чем размер трубки. Производители могут указывать в сопровождающей документации два размера диагонали, при этом видимый размер обычно обозначается в скобках или с пометкой "Viewable size", но иногда указывается только один размер - размер диагонали трубки.
Обычно мониторы с большой диагональю трубки представляются в качестве лучшего решения, даже при наличии некоторых проблем, таких, как стоимость и требуемое пространство на рабочем столе. Как мы уже говорили, выбор размера, а, следовательно, и лучшего разрешения, зависит от того, как вы используете монитор: например, если вы крайне редко используете компьютер, лишь для того, чтобы написать письмо, то для вас лучшим решением может быть 14" монитор с разрешением 640x480; с другой стороны, если вам требуется больше рабочего пространства на экране при использовании текстового процессора, то для вас гораздо лучше подойдет 17" монитор с разрешением 1024x768, который имеет еще и также преимущество над 14" монитором, как менее изогнутая поверхность экрана.
Если вы пользуетесь электронными таблицами, занимающими большую площадь, и вам требуется одновременное использование нескольких документов, то стоит остановить свой выбор на 17" мониторе с разрешением 1024x768, а лучше с разрешением 1280x1024. Если вы профессионально занимаетесь версткой (DTP, Desk Top Publishing) или дизайном и моделированием в CAD-системах, то вам потребуется монитор с диагональю от 17" до 24" для работы в разрешениях от 1280x1024 до 1600x1200 точек. Большой монитор с поддержкой высокого разрешения позволит вам более комфортно работать, так как вам не потребуется увеличивать картинку, или перемещать отдельные ее части, или использовать виртуальный десктоп, когда несколько мониторов подключены к одной или нескольким видеокартам. Наличие большого монитора - это все равно, что смотреть через окно на мир: чем больше окно, тем больше вы видите без необходимости выглядывать наружу.
Ниже мы приводим таблицу с минимально допустимыми частотами регенерации мониторов по новому стандарту TCO’99 для разных разрешений:
Диагональ монитора |
Частота регенерации |
Разрешение |
14" - 15" |
85 Hz и выше |
800x600 и выше |
17" |
85 Hz и выше |
1024x768и выше |
19"-21" |
85 Hz и выше |
1280x1024 и выше |
свыше 21" |
85 Hz и выше |
1280x1024 и выше |
Если вместо размера CRT используется видимый размер экрана, то данные в таблице выше также применимы. Заметим, что приведены минимально допустимые параметры, а рекомендованная частота регенерации минимум 100 Hz.
Понятно, что данные в таблице чисто справочные, и никто не запрещает вам работать на 15" мониторе с разрешением 1024x768. Все зависит от возможностей вашего монитора, ваших предпочтений и вашего зрения.
Теперь логично перейти к вопросу о стандартах безопасности и энергосбережения. Тем более, что на всех современных мониторах можно встретить наклейки с аббревиатурой TCO или MPRII.
TCO (The Swedish Confederation of Professional Employees, Шведская Конфедерация Профессиональных Коллективов Рабочих ), членами которой являются 1.3 миллиона шведских профессионалов, организационно состоит из 19 объединений, которые работают вместе с целью улучшения условий работы своих членов. Эти 1.3 млн. членов представляю широкий спектр рабочих и служащих из государственного и частного сектора экономики.
TCO никак не связана с политикой или религией, что является одной из определяющих причин, позволяющей объединяться различным коллективным членам под крышей одной организации.
Учителя, инженеры, экономисты, секретари и няньки - лишь немногие из групп, которые все вместе формируют TCO. Это означает, что TCO отражает большой срез общества, что обеспечивает ей широкую поддержку.
Это была цитата из официального документа TCO. Дело в том, что более 80% служащих и рабочих в Швеции имеют дело с компьютерами, поэтому главная задача TCO - это разработать стандарты безопасности при работе с компьютерами, т.е. обеспечить своим членам и всем остальным безопасное и комфортное рабочее место. Кроме разработки стандартов безопасности, TCO участвует в создании специальных инструментов для тестирования мониторов и компьютеров.
Стандарты TCO разработанны с целью гарантировать пользователям компьютеров безопасную работу. Этим стандартам должен соответствовать каждый монитор, продаваемый в Швеции и в Европе. Рекомендации TCO используются производителями мониторов для создания более качественных продуктов, которые менее опасны для здоровья пользователей. Суть рекомендаций TCO состоит не только в определении допустимых значений различного типа излучений, но и в определении минимально приемлемых параметров мониторов, например, поддерживаемых разрешений, интенсивности свечения люминофора, запас яркости, энергопотребление, шумность и т.д. Более того, кроме требований, в документах TCO приводятся подробные методики тестирования мониторов. Некоторые документы и дополнительную информацию можно найти на официальном сайте TCO: tco-info.com
Рекомендации TCO применяются как в Швеции, так и во всех Европейских странах для определения стандартных параметров, которым должны соответствовать все мониторы. В состав разработанных TCO рекомендаций сегодня входят три стандарта: TCO’92, TCO’95 и TCO’99, нетрудно догадаться, что цифры означают год их принятия.
Большинство измерений во время тестирований на соответствие стандартам TCO проводятся на расстоянии 30 см спереди от экрана и на расстоянии 50 см вокруг монитора. Для сравнения: во время тестирования мониторов на соответствие другому стандарту MPRII все измерения производятся на расстоянии 50 см спереди экрана и вокруг монитора. Это объясняет то, что стандарты TCO более жесткие, чем MPRII.
Стандарт TCO’92 был разработан исключительно для мониторов и определяет величину максимально допустимых электромагнитных излучений при работе монитора, а также устанавливает стандарт на функции энергосбережения мониторов. Кроме того, монитор, сертифицированный по TCO’92, должен соответствовать стандарту на энергопотребление NUTEK и соответствовать Европейским стандартам на пожарную и электрическую безопасность.
Стандарт TCO’95 рассчитан только на мониторы и их характеристики относительно электрических и магнитных полей, режимов энергосбережения и пожарной и электрической безопасности. Стандарт TCO’95 распространяется на весь персональный компьютер, т.е. на монитор, системный блок и клавиатуру, и касается эргономических свойств, излучений (электрических и магнитных полей, шума и тепла), режимов энергосбережения и экологии (с требованием к обязательной адаптации продукта и технологического процесса производства на фабрике). Заметим, что в данном случае термин "персональный компьютер" включает в себя рабочие станции, серверы, настольные и напольные компьютеры, а также компьютеры Macintosh.
Стандарт TCO’95 существует наряду с TCO’92 и не отменяет последний.
Требования TCO’95 по отношению к электромагнитным излучениям мониторов не являются более жесткими, чем по TCO’92. Кстати, что касается эргономики, то TCO’95 в этом отношении предъявляет более строгие требования, чем международный стандарт ISO 9241. Отметим, что LCD и плазменные мониторы также могут быть сертифицированы по стандартам TCO’92 и TCO’95, как, впрочем, и портативные компьютеры.
В разработке стандарта TCO’95 принимали совместное участие четыре организации: TCO, Naturskyddforeinegen, NUTEK и SEMKO AB.
Naturskyddforeinegen (The Swedish Society for Nature Conservation) – Шведское общество защиты природы. Это их знак в виде летящего сокола размещен на эмблеме TCO’95.
NUTEK (The National Board for Industrial and Technical Development in Sweden) – Шведская правительственная организация, занимающаяся исследованиями в области энергосбережения и эффективного использования энергии.
Компания SEMKO AB занимается тестированием и сертификацией электрических продуктов. Это независимое подразделение группы British Inchcape. SEMKO AB разработала тесты для TCO’95 сертификации и проверки сертифицированных устройств.
TCO’99 предъявляет более жесткие требования, чем TCO’95, в следующих областях: эргономика (физическая, визуальная и удобство использования), энергия, излучение (электрических и магнитных полей), окружающая среда и экология, а также пожарная и электрическая безопасность. Стандарт TCO’99 распространяется на традиционные CRT-мониторы, плоскопанельные мониторы (Flat Panel Displays), портативные компьютеры (Laptop и Notebook), системные блоки и клавиатуры. Спецификации TCO’99 содержат в себе требования, взятые из стандартов TCO’95, ISO, IEC и EN, а также из EC Directive 90/270/EEC и Шведского национального стандарта MPR 1990:8 (MPRII) и из более ранних рекомендаций TCO. В разработке стандарта TCO’99 приняли участие TCO, Naturskyddsforeningen и and Statens Energimyndighet (The Swedish National Energy Administration, Шведское Национальное Агентство по Энергетике).
Экологические требования включают в себя ограничения на присутствие тяжелых металлов, броминатов и хлоринатов, фреонов (CFC) и хлорированных веществ внутри материалов.
Любой продукт должен быть подготовлен к переработке, а производитель обязан иметь разработанную политику по утилизации, которая должна исполняться в каждой стране, в которой действует компания.
Требования по энергосбережению включают в себя необходимость того, чтобы компьютер и/или монитор после определенного времени бездействия снижали уровень потребления энергии на одну или более ступеней. При этом период времени восстановления до рабочего режима потребления энергии, должен устраивать пользователя.
MPRII базируется на концепции о том, что люди живут и работают в местах, где уже есть магнитные и электрические поля, поэтому устройства, которые мы используем, такие, как монитор для компьютера, не должны создавать электрические и магнитные поля, большие чем те, которые уже существуют. Заметим, что стандарты TCO требуют снижения излучений электрических и магнитных полей от устройств настолько, насколько это технически возможно, вне зависимости от электрических и магнитных полей, уже существующих вокруг нас. Впрочем, мы уже отмечали, что стандарты TCO жестче, чем MPRII.
Это еще один стандарт, разработанный в Швеции, где правительство и неправительственные организации очень сильно заботятся о здоровье населения страны. MPRII был разработан SWEDAC (The Swedish Board for Technical Accreditation) и определяет максимально допустимые величины излучения магнитного и электрического полей, а также методы их измерения.
Стандарт DDC (Display Data Channel) обеспечивает монитору возможность напрямую обмениваться данными с видеоадаптером. Видеоадаптер получает от монитора всю необходимую информацию о функциональных возможностях последнего, что, в результате, обеспечивает возможность автоматического конфигурирования и выбора оптимальных значений частоты регенерации экрана, в зависимости от выбранного вами разрешения.
DDC - это основа функциональных возможностей Plug & Play (включи и работай) применительно к мониторам. DDC находит физические коммуникационные каналы между монитором и видеоадаптером, которые позволяют монитору обмениваться информацией с видеоадаптером, а CPU пересылает все необходимые данные о функциональных возможностях монитора. В основе стандарта DDC лежит специальная архитектура, разработанная Philips и DEC, известная под именем I2C. I2C используется для управления шиной данных, состоящей из двух проводов, по которым передаются двунаправленные сигналы, и одного провода, который используется для заземления. Вы можете подключить к этой шине каждый компонент, начиная от CPU и заканчивая монитором, видеоадаптер и все, что угодно, и каждый из этих компонентов управляет шиной во время начала передачи данных. В этот момент управляющий шиной компонент становится Master Bus. В то же время другие устройства, подключенные к шине I2C, становятся Slave Bus. Преимуществом такой архитектуры является низкая стоимость и надежность при передаче данных.
Существуют три различных уровня DDC:
- DDC1: используется монитором для передачи конфигурационной информации (EDID) в компьютер.
- DDC2B: использует шину I2C для чтения конфигурационных данных из монитора.
- DDC2AB: используется двунаправленный обмен информацией между монитором и компьютером и работает под управлением команд, передаваемых по протоколу ACCESS.BUS .
VESA(Video Electronics Standard Association)-это некоммерческая компания, управляемая группой директоров, представляющих более 280 компаний со всего мира. VESA появилась в тот момент, когда на рынке стали появляться графические устройства, несовместимые между собой, следствием чего стало появление массы проблем. VESA занимается разработкой стандартов с целью добиться высочайшего уровня совместимости между устройствами, которые соответствую стандарту. Все стандарты разрабатываются лучшими специалистами в области аппаратного и программного обеспечения из лучших компаний, связанных с графикой в компьютерном мире. Более подробную информацию о стандартах и о самой VESA можно найти на их официальном сайте: http://www.vesa.org/
Система управления энергопотреблением монитора основана на спецификации EPA с названием Energy Star, реализация которой позволяет снизить энергопотребление системы в режиме бездействия на 60-80%, по сравнению с тем, сколько монитор потребляет энергии при работе в высоком разрешении и при большой глубине представления цвета. EPA (Environmental Protection Agency) - это агентство по защите окружающей среды при правительстве США. Официальный сайт EPA - http://www.epa.gov, но лучше всего сразу смотреть на специальном сайте http://www.energystar.gov
DPMS (Display Power Management Signaling) - это стандарт консорциума VESA. DPMS определяет режимы управления энергопотреблением, которые вы можете использовать, когда монитор бездействует, при этом вы можете выбрать один из трех режимов, которые показаны в таблице выше: "Standby", "Suspend" и "Off" ("Shut down"). Монитор должен соответствовать стандарту EPA Energy Star, но использовать эти режимы вы можете только в том случае, если ваш компьютер (вернее - BIOS материнской платы вашего компьютера), видеоадаптер и операционная система поддерживают спецификацию DPMS, рекомендованную VESA.
Литература:
1. Литвак И. И. Испытательный Центр Средств Отображения Информации //Госстандарт России . - М., 2002г;
2. Жидкокристаллические мониторы: прошлое и настоящее //ТелеКом-Ростов, 2004 год, №18 (26.05.2004 - 02.06.2004)
3. Прохоров А. Мониторы — путь от трубки до пластины//КомпьютерПресс №4 2000 г.
4. Http://www.ixbt.com/monitor.shtml - Мониторы на основе ЭЛТ.
5. Http://www.sound-stream.ru - Жидкокристаллические,плазменные мониторы и телевизоры.
|
|
|
|
Выберите начальную букву термина:
|
|